
Sandbox 10 The Pipeline Ring

Ring Component Structures

Ring Behavior Referents

- slowest oscillation period (the period of the slowest oscillation in the ring),
- wavefront rejoin period (the total delay of the ring wavefront path),
- bubble rejoin period (the total delay of the ring bubble path),
- the wavefront population period (number of wavefronts times slowest oscillation period)
- the bubble population period (number of bubbles times slowest oscillation period)
- number of bubbles = number of oscillations in ring number of wavefronts in ring
- wavefronts are always in data empty pairs

The behavior rationale is:

Each member of a population chases its population around the ring. The critical question is whether a member ever catches up with its population and has to wait. This is determined by whether a population can propagate through the slowest oscillation (population period) before a member can propagate around the ring and overtake the population (rejoin period).

If a member does not catch up with its population it encounters no waits on its journey around the ring, therefore, its propagation time around the ring (rejoin period) is determined solely by the delays along its propagation path.

Ring Behavior Modes

Wavefront limited

If wavefront rejoin period > wavefront population period & bubble rejoin period <= bubble population period Wavefronts free flow and do not wait on anything. Slowest oscillation and bubbles wait on wavefronts. throughput = wavefront population/wavefront rejoin period.

Bubble limited

If bubble rejoin period > bubble population period & wavefront rejoin period <= wavefront population period Bubbles free flow and do not wait on anything. Slowest oscillation and wavefronts wait on bubbles . throughput = bubble population/bubble rejoin period.

Delay limited

If both rejoin periods are < their respective population periods The slowest oscillation does not wait on anything. Wavefronts and bubbles wait on the slowest oscillation. throughput = period of slowest oscillation.

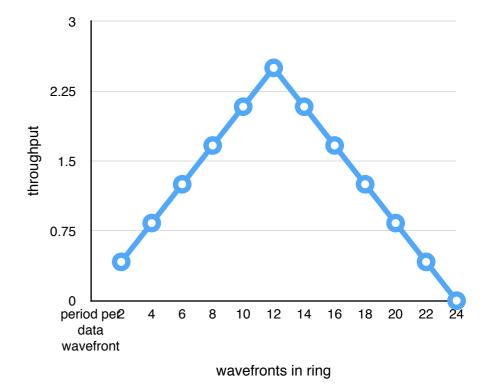
Perfect balance

Rejoin periods and population periods are all equal Nobody waits. Wavefronts, bubbles flow around the ring with perfect just in time arrival. throughput = wavefront population/wavefront rejoin period.

Deadlock

number of bubbles = 0

Ring Behavior Tables

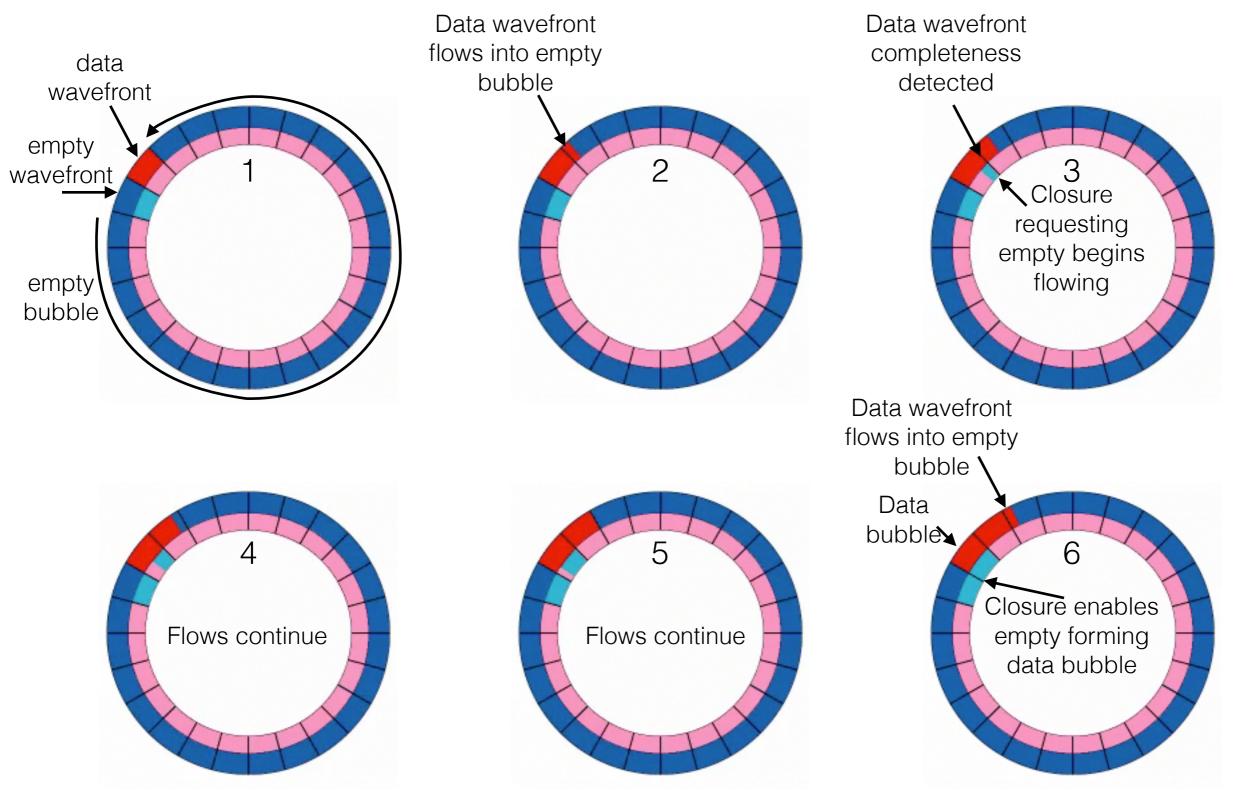

The spreadsheet tables model ring behavior in terms of the quantities defined above

balanced corresponds to ring24bal.v																
Forward wavefront buf fun		Reverse bubble buf fun		oscillation period buf fun		osc in ring	waves bubbles in in ring ring		wave population period	bubble population period	wave rejoin period	bubble rejoin period	period per data wavefront	data throughput gHz		
100	100	100 100 100 200 200 24 2 22 4		400	4400	2400	2400	2400 2400.00 0.42		wave limited						
100	100	100	100	200	200	24	4 20		800	4000	4000 2400		1200.00	0.83	wave limited	
100	100	100	100	200	200	24	24 6		1200	3600	2400	2400	800.00	1.25	wave limited	
100	100	100	100	200	200	24	8	16	1600	3200	2400	2400	600.00	1.67	57 wave limited	
100	100	100	100 200 200 24 10 1		14	2000	2800	2400	2400	480.00	2.08	wave limited				
100	100	100	100 100 200 200 24 12 12		12	2400	2400	2400	2400	400.00	2.50	perfect balance				
100	100 100 100 200 200 24 14 1		10	2800	2000	2400	2400	480.00	2.08	bubble limited						
100	0 100 100 100 200 200		24	16	8	3200	1600	2400	2400	600.00	1.67	bubble limited				
100	100	100	100	200	200	24	18	6	3600	1200	2400	2400	800.00	1.25	bubble limited	
100	100 100 100 200 200 24 20 4 40		4000	800	2400	2400	1200.00	0.83	bubble limited							
100	100	100 100 100 200 200 24 22 2 44		4400	400	2400	2400	2400.00	0.42	bubble limited						
100	100 100 100		100	200	200	24	24	0	4800	0	2400	2400	0.00	0.00	deadlock	
slowest cycle					200											

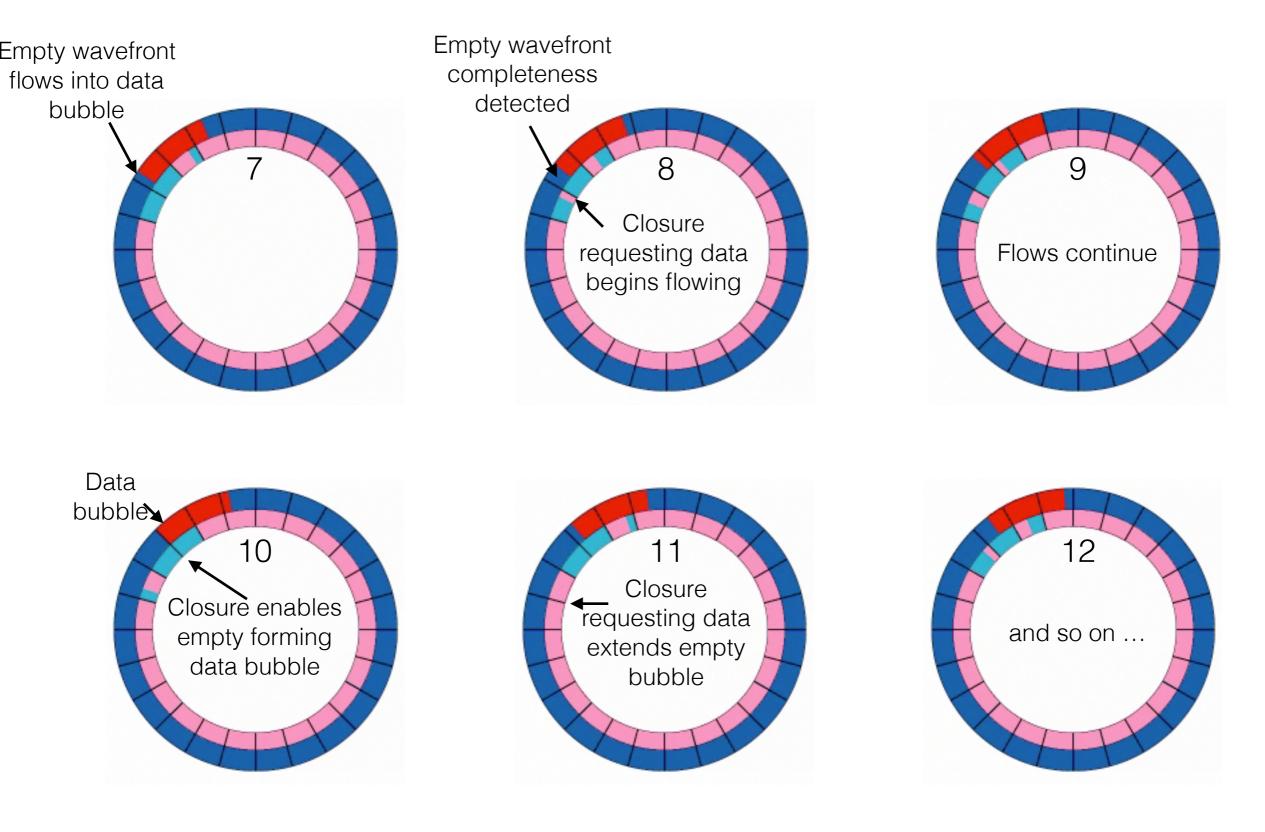
Ring behavior is quantized

Ring behavior occurs in discrete steps. A pipeline ring is a closed structure composed of elements that only occur as whole quantities. There cannot be a partial oscillation or a partial wavefront. On the ring behavior graphs there are lines connecting the behavior points to show relationships but there is no behavior on the lines between the points. There is only ring behavior at the points.

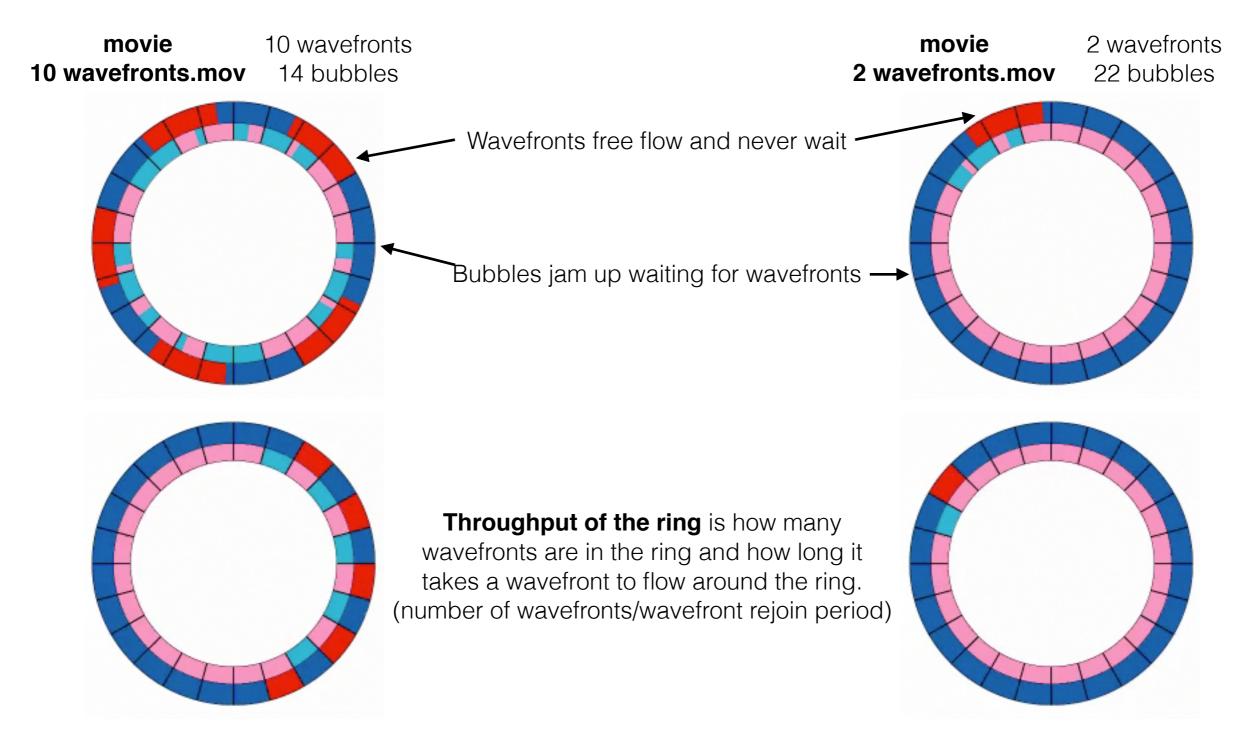
The shape of the curve can change with varying delays but for a 24 oscillation ring there is always exactly 11 non deadlock behavior points defining the curve.



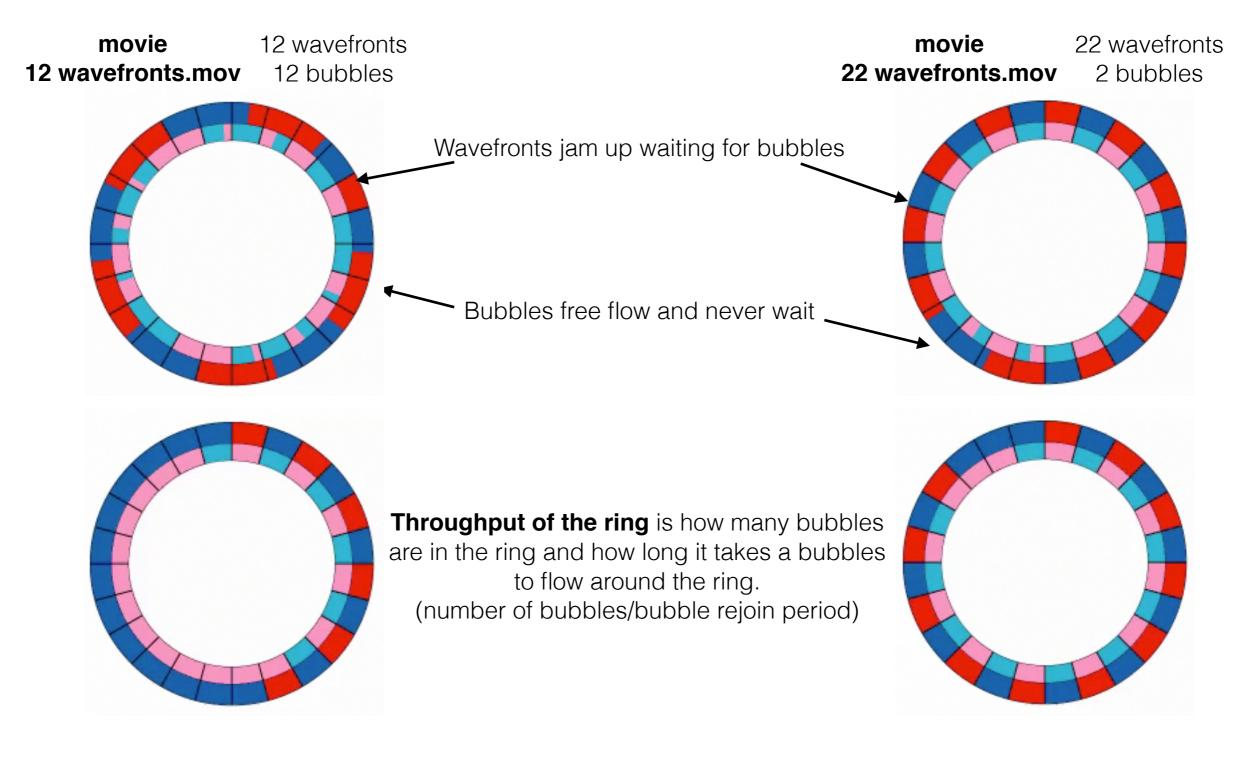
Ring Movies


The ring movies present a God's eye view of ring behavior.

Ring Movie Dynamics 1

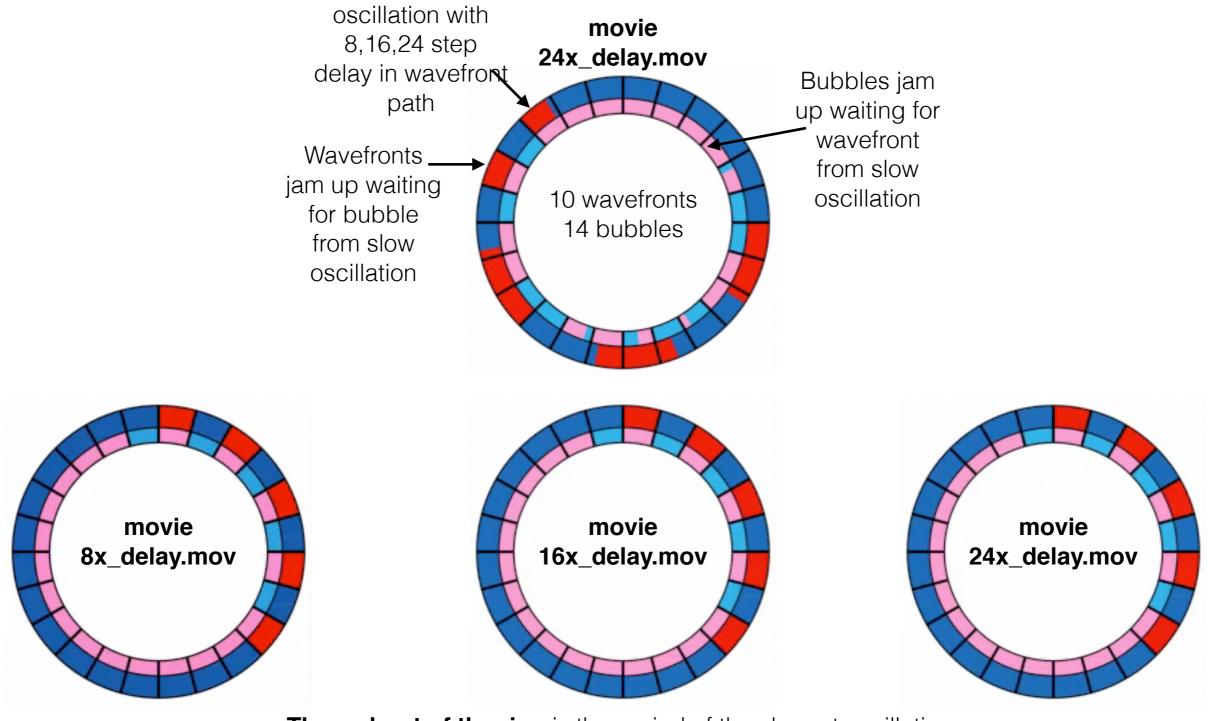


Ring Movie Dynamics 2


Wavefront Limited Behavior

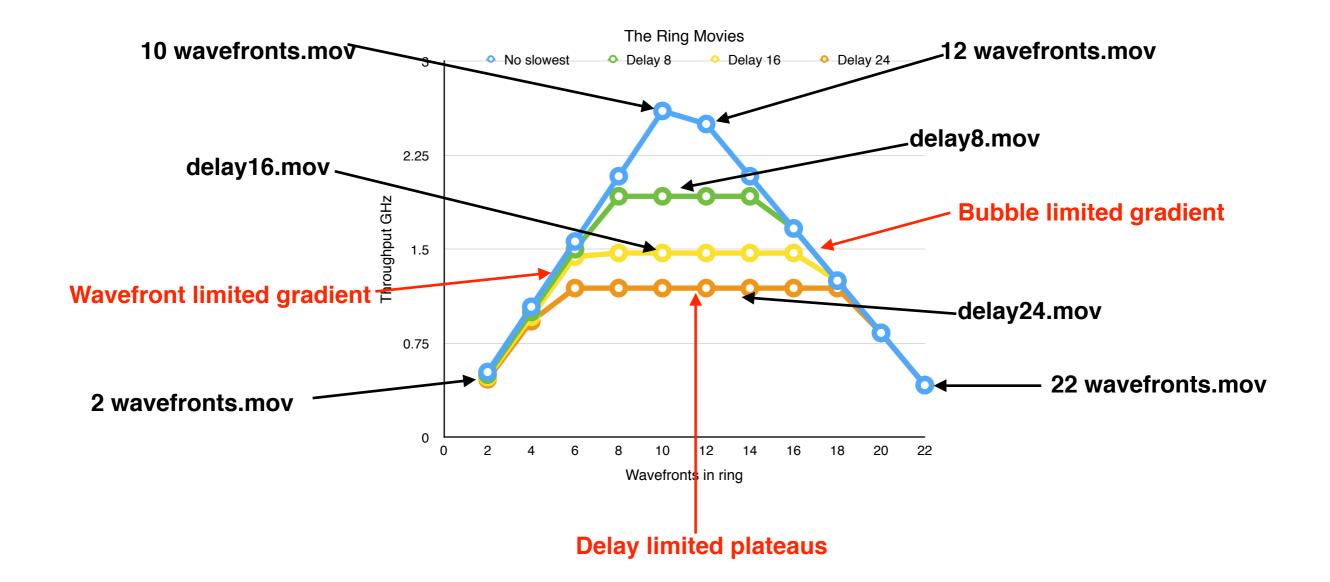
There are sufficient bubbles for all wavefronts to flow freely. Bubbles wait on wavefronts. (wavefront rejoin period > wavefront population period & bubble rejoin period < bubble population period)

Bubble Limited Behavior


There are sufficient wavefronts for all bubbles to flow freely. wavefronts wait on bubbles. (bubble rejoin period > bubble population period & wavefront rejoin period < wavefront population period)

Delay Limited Behavior

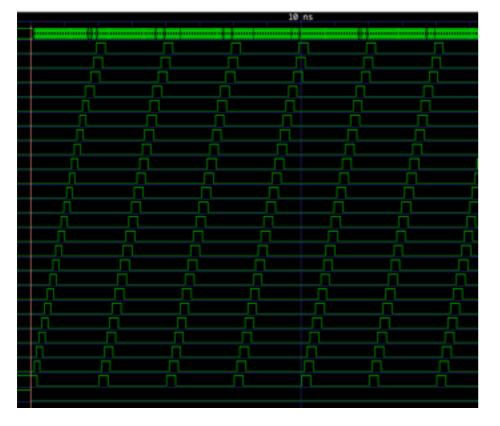
Wavefronts and bubbles wait on the slow oscillation.


(bubble rejoin period < bubble population period & wavefront rejoin period < wavefront population period)

Throughput of the ring is the period of the slowest oscillation. (slowest oscillation period)

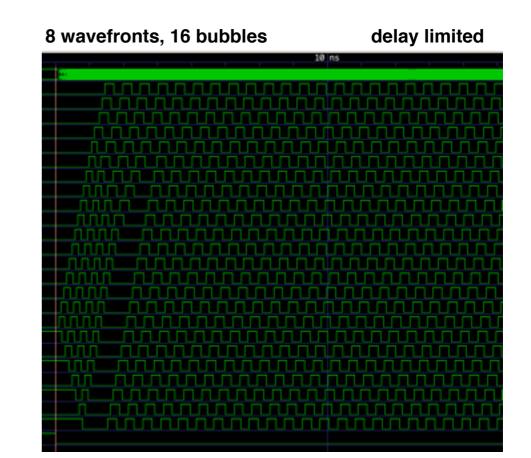
Ring Movie Behavior Profiles

From ring movies spread sheet which is set up to match the delay ratios of the ring movies.

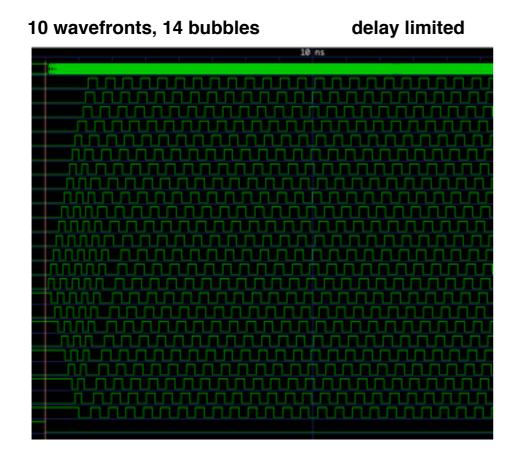


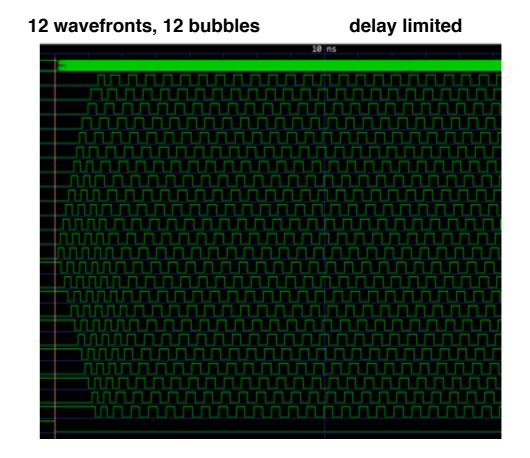
delay 8.mov

Simulation matches wavefront and bubble delay ratios of movies


2 wavefronts, 22 bubbles

wavefront limited




6 wavefronts, 18 bubbles	wavefront limited						
10	ns						
in and the second s	and the second second second second						

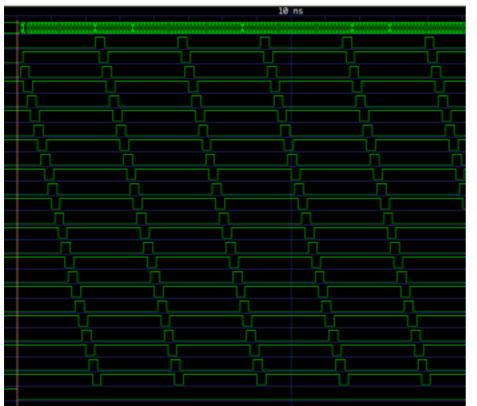
4 wavefronts, 20 bubbles	wavefront limited
	wavefront limited

delay 8.mov Simulation matches wavefront and bubble delay ratios of movies

14 wavefronts, 10 bubbles delay limited

16 wavefronts, 8 bubbles

bubble limited


delay 8.mov Simulation matches wavefront and bubble delay ratios of movies

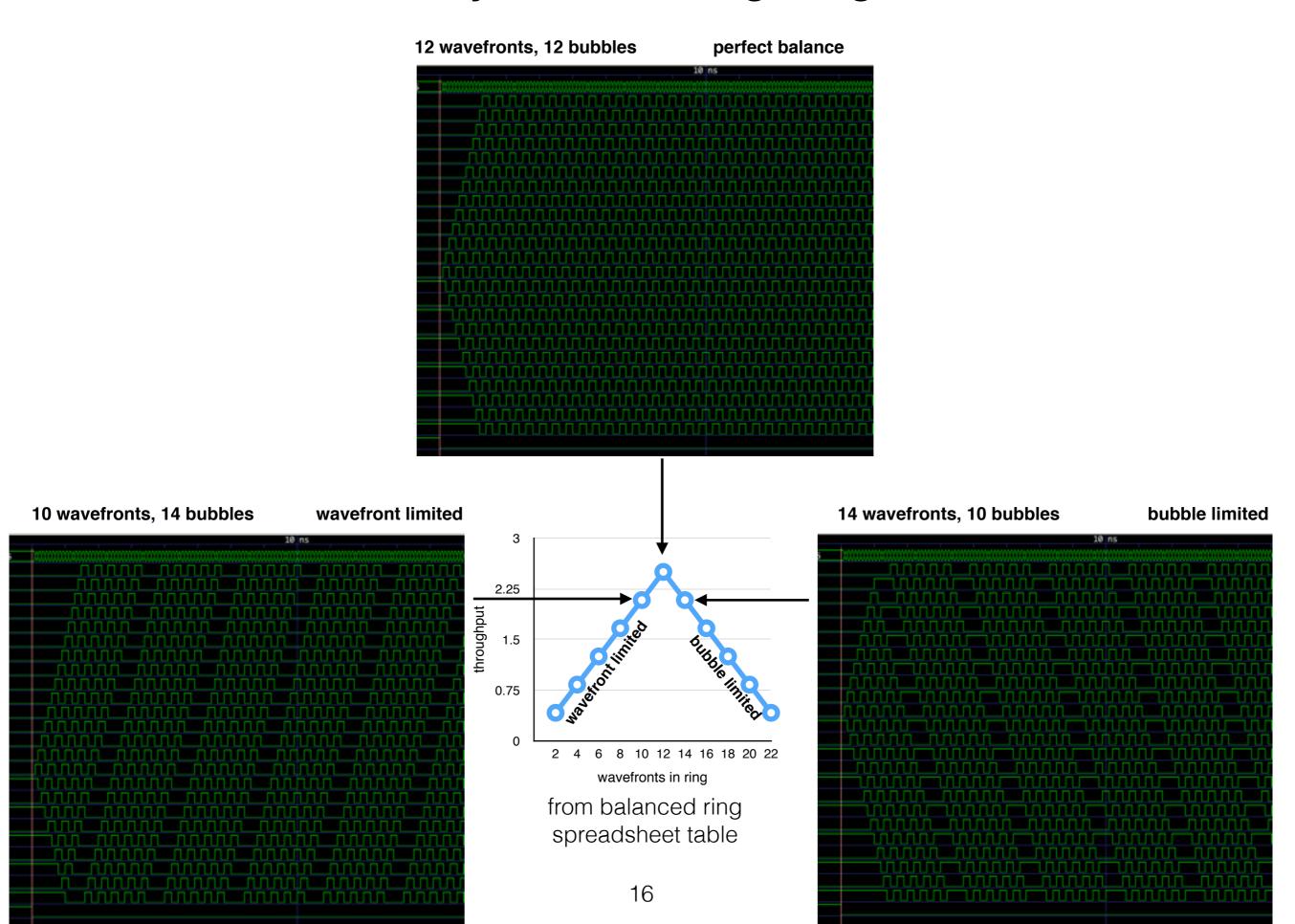
15

18 wavefronts, 6 bubbles bubble limited
10 ns

22 wavefronts, 2 bubbles

bubble limited

24 wavefronts, 0 bubbles


20 wavefronts, 4 bubbles

deadlocked

bubble limited

The Perfectly Balanced Ring - ring24bal.v

Three and Four Oscillation Rings

The most common examples of ring are three and four oscillation rings

A ring must contain at least three oscillations.

There are at least two wavefronts, one data and one empty and there must be at least one bubble. Unless one oscillation is very slow a three oscillation ring will be bubble limited.

Optimal throughput typically occurs when each wavefront has a bubble to flow into, so a perfectly balanced four oscillation ring will provide optimal throughput.

The spreadsheet tables completely characterize three and four oscillation rings to facilitate their study and comparison.

Four o	scillatio	n ring																			
Forward wavefront path					ibble/cl	verse osure p		oscillation period				osc in	waves in	bubbles in	wave population	wave rejoin	bubble population	bubble rejoin	period per data	throughput	
osc A	A osc B osc C osc D osc A osc B osc C osc D				osc D	osc A osc B osc C osc D				ring	ring	ring	period	period	period	period	wavefront	gHz			
50	60	60	60	60	60	60	60	110	120	120	120	4	2	2	240	230	240	240	240.00	4.17	delay limited
70	60	60	60	60	60	60	60	130	120	120	120	4	2	2	260	250	260	240	260.00	3.85	delay limited
90	60	60	60	60	60	60	60	150	120	120	120	4	2	2	300	270	300	240	300.00	3.33	delay limited
110	60	60	60	60	60	60	60	170	120	120	120	4	2	2	340	290	340	240	340.00	2.94	delay limited
130	60	60	60	60	60	60	60	190	120	120	120	4	2	2	380	310	380	240	380.00	2.63	delay limited
150	60	60	60	60	60	60	60	210	120	120	120	4	2	2	420	330	420	240	420.00	2.38	delay limited
170	60	60	60	60	60	60	60	230	120	120	120	4	2	2	460	350	460	240	460.00	2.17	delay limited
190	60	60	60	60	60	60	60	250	120	120	120	4	2	2	500	370	500	240	500.00	2.00	delay limited
Three	oscillati	on ring																			
50	60	60	xxx	60	60	60	xxx	110	120	120	xxx	3	2	1	240	170	120	180	360.00	2.78	bubble limited
70	60	60	xxx	60	60	60	xxx	130	120	120	xxx	3	2	1	260	190	130	180	360.00	2.78	bubble limited
90	60	60	xxx	60	60	60	xxx	150	120	120	xxx	3	2	1	300	210	150	180	360.00	2.78	bubble limited
110	60	60	xxx	60	60	60	xxx	170	120	120	xxx	3	2	1	340	230	170	180	360.00	2.78	bubble limited
130	60	60	xxx	60	60	60	ххх	190	120	120	xxx	3	2	1	380	250	190	180	380.00	2.63	delay limited
150	60	60	xxx	60	60	60	ххх	210	120	120	xxx	3	2	1	420	270	210	180	420.00	2.38	delay limited
170	60	60	xxx	60	60	60	xxx	230	120	120	xxx	3	2	1	460	290	230	180	460.00	2.17	delay limited
190	60	60	xxx	60	60	60	ххх	250	120	120	xxx	3	2	1	500	310	250	180	500.00	2.00	delay limited