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Does Multi-value Representation
Provide Advantages For
Expressing Numeric Processes?

With the familiar electronic representation a digit is a path and
value is represented as discriminable voltage levels on that path;
values are clearly much more expensive than digits.

With multi-path representation enabling multi-value variables,
values and digits are both represented with paths. The cost to
represent a digit and the cost to represent its values are identical
and there is no bias.

Multi-path representation allows the consideration of radices and
encodings other than binary for numeric representation.

Various encodings are considered in terms of cost of transmission
and cost of functional combination.
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Cost of Representation

Binary Multi-rail
Cost of place voltage threshold wire
Cost of value wire wire

The cost of representing a given number with M of N encoding is the number
of values per digit times the number of digits to represent the number.

Number of representational values
The N/2 of N encodings show significant advantage.

The 1 of 2 and 1 of 4 encodings are the optimal 1 of N encodings.



Cost of Flow

binary N/20fN 10fN
Cost of flow per digit 0.5 N 2

The cost of flow is how many path switches per digit times the number of
digits to move a number.
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The multi-path encoded digits switch twice per digit because of the NULL
transition between each data wavefront. Ignoring the cost of the clock signal
and explicit registers, the binary representation switches 0.5 times per digit
because of the average switching behavior of binary representation.

The important observation is that 10f4 is better than any of the N/2ofN encodings
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FLumeric value

Combined Cost of Representation

Adding the two costs to get a figure of merit. One can see that 10f4 is the optimal 1
of N encoding. It is superior to 10f2. Only 40f8 and 30f6 appear to be better.

10f4 and 10f2 have the identical representation cost in number of paths but 10f4 has
half the switching cost.
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Cost of Expressing Combination

binary 10f2 10f4 20f4 1018
The cost of combining digits 4 4 16 36 64

The cost of combining numbers represented in the various encodings with arithmetic
operations such as addition is measured by taking the number of minterms defining
a function combining two digits.
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Again, 10f4 stands out as an optimal representation only bested by 10of2.
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FLumeric value

To represent 64K

Cost of Resolving Combifation

Binary N/20fN 10fN
The cost of resolving digit combination 1.5 2 2

The cost of resolving digit combination is the number of minterm transitions to resolve a
combination of two digits. For all the multi-path encodings exactly one minterm per digit
combination will transition to DATA then to NULL for two transitions.
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For Boolean representation there are 4 minterms per digit. The probability that the same
minterm will be used consecutively and not cause 2 switches is 0.25 leaving an average
of 1.5 transitions per digit combination.

of4

The chart does not take into account the fan-in and fan-out complexity of the minterm which

Pagé's-?uch greater for N/2 of N encodings than for the 1 of N encodings.
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Combined Cost of Combination

When the resource and energy costs of digit combination are combined
it shows that 1 of 2 and 1 of 4 are the most efficient encodings.
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Summary of Multi-path
Numeric Representation

The 10f4 encoding is clearly superior to 10f2 encoding for
transmission. The path resources for 10f2 and 10f4 are identical
and 10f4 requires half the switching energy.

The N/20fN encodings provide slightly better performance for
transmission but their combinational performance is abysmal.

The 10fN>4 codes fall below 10f2 and 10f4 in both categories so
that leaves only 10f2 and 10f4 to consider.

While combining 10f4 variables is more costly in resources, it has
a considerable advantage in terms of energy and speed (fewer
stages of logic, fewer digits asserting a value, shorter addition carry
chain).

The 10f4 (quaternary) encoding seems to be a viable option for
numeric representation with multi-path representation.
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The Quaternary Data Path

The quaternary data path requires half the switching than does a binary data
path with slightly less hardware.

Quaternary (four-rail) data path
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A quaternary ALU and a binary ALU
are compared.

The binary ALU is considered both

with 1 of 4 data path representation
converted to binary and

with 1 of 2 data path representation.
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The Quaternary Logic Operations
are Derived in Terms of Tandem
Binary Logic Operations.
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The Quaternary Arithmetic
Operations are Simply Radix
Four Arithmetic Operations.

quaternary SUM quaternary CARRY
A SUM A CARRY
01 2 3 AO A3 01 2 3 A0 A3
olo 1 2 3 BO ojo 0 0 O BO
Cl=0 B11230 g1/0 0 0 1
2|2 3 0 1 2lo0 0o 1 1
3|3 01 2 B3 3lo 1 1 1 B3
quaternary SUM quaternary CARRY
A SUM A CARRY
01 2 3 AO A3 01 2 3 A0 A3
o|1 2 3 0 olo o 0o 1 BO
Cl=1 g 12 301 gi1lo o 1 1
2|3 0 1 2 2lo0 1 1 1
3l0 1 2 3 3|1 1 1 1 B3
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Quaternary ADD

Quaternary XOR
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The Quaternary Shift Operation is Derived in Terms of Tandem
Binary Shift Operations.

Shift Right
one bit with
carry in zero

(SRCO0)

Shift Right

one bit with

carry in one
(SRC1)

Shift Left
one bit with
carry in zero

(SLCO)

Shift Left
one bit with
carry in one

(SLCH1)

Page 17

in out
/\ /\
c/rry quat blna\yb/_ quat aﬁ
O=O=OO=OO=O=O
0=1=01=00=0-=1
0=2=10=01=1=0
0=3=11=01=1-=1
in out
N AN
N
carry quat binary binary quat carry
1=0=00=10=2-=20
1=1=01=10=2 =1
1=2=10=11 =3 =0
1=3=11 =11 =3 =1
in out
_A /\_
- N
carry quat binary binary quat carry
0=0=00=000=0=20
0=1=01=10=2=20
0=2=10=00=0 =1
0=3=11=10=2 =1
in out
AN A
carry quat binary binary quat carry
1=0=00=01=1=20
1=1T=01=11=3=0
1=2=10=01 =1 =1
1=3=11 =11 =3 =1
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Left shift
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LCO
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Quaternary One Bit
Shift Left or Right
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Quaternary ALU
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Binary Operators

Quaternary to Binary
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Binary Operators

Binary Shift
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Binary ALU With Converison

(operators,switches,delays)
shift (16,5,2)
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ALU Comparisons

The Quaternary ALU is clearly competitive.

Converting from 1 of 4 to 1 of 2 and back is clearly expensive. It is much more economic
to remain in 1 of 4 mode and perform quaternary arithmetic.

Is it more economical to remain entirely in 1 of 2 mode?

Removing the data path conversion from the binary ALU removes 2 delays from each
operation, 5 switchings from AND, OR XOR and ADD and 3 switchings from NOT and
SHIFT. The resulting ALU has slightly fewer operators but is still more expensive in

terms of switching and delay and the switching cost of data path transmission doubles.

Binary ALU with conv Quaternary ALU Binary ALU without conv

1 : . The red entries
402 operéztors swzzches de{ay operators| switches|delay operators| switches|delay in _dicate differe_nces
2to 4 4 1 1 with the table in the
com min 8 1 1 10 1 1 8 1 1 gpok. Apparently |
ADD 16 6 14 16 ) id not ]Yelit the tlable
OR 4 5 24 | 24 4 as carefully as
AND 4 5 2.4 2.4 4 thought | had.
XOR 4 5 2.1 2.1 4 _
NOT 4 5 4 4 The differences are
SHIFT 16 8 16 3 16 5 mmolr andthe
totals 68 53 | 25 59 15.9] 12.9 56 27 | 13 conclusion remains

the same.

For comparison purposes the raw totals are shown instead of dividing
all the switch and delay totals by 6 to get an average per operator.

The switch and delay numbers for the operations include the conversions
and minterm as a total cost of each operator.
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