The Flow Component

Karl Fant
April 2015

The flow component is the unit of composition of a flow network.
It consists of:

a boundary of input and output token names each representing a half
oscillation with an associated closure path.

a flow relation that specifies the structure of token flow fom input to output.

a body that is a completeness interaction behavior mapping the input tokens
to the output tokens.

a link generating completeness closure for each input token and accepting
closure from each output token linking the input oscillations to the output
oscillations.

function table
X0 X1 X/2

YIO| zio | zin | z~2

YIL| zl1 | z/2 | Z/3

The flow relation specifies
the AND-OR relations
among boundary tokens
Imposed by the
component. While the
declarations specify the
AND-OR relation structure
for individual tokens, the
flow relation specifies the
AND-OR relations among
flowing tokens. The
relations imposed by the
component project beyond
the component and is a key
factor in analyzing the
integrity of composition.

If a flow relation is not
present an AND
relationship among the
input tokens and among
the output tokens is implied.

The Parts of a Flow Component

The binary-trinary-quaternary adder

token Y{1,0}, X{2, 1, 0}, Z{3, 2, 1, O};

(X, Y ->2Z){
flow [X, Y] -> Z;

Z/0 = X/0 & Y/0;
Z/1 = X/1 & Y/O | X/0 & Y/1;
Z/2 = X/2 & YI0 | X/1 & Y/1:
Z/3 = X/2 & Y/1;

}

close X = #Z;
close Y = #Z;
close Z = #7?;

The boundary specification
specifies the input tokens and
the output tokens. Each token
represents a half oscillation and
assumes a closure rail.

The body is a shared
completeness behavior that
specifies the transfer function
of the flowing wavefronts.

The closure equations
generate the closure flows
for the input tokens. They
are generally a direct
derivation of the flow relation
and the token declarations.

The inversion is included in
close name = #?.

The oscillation link linking 3 oscillations. There
IS a link for each output flow. It is implied by the

output name list but can be made explicit with the
reference Z/closure which assumes the inversion.

Change of Course

We have specified AND-OR relations in
token declarations and in flow relations with [] and { }.

flow PCcontrol{ _
/next[curPC] -> [newPC, nextinst],

] |
/branch[curPC, cond, PCimm] ->I_j>newPC_, nextinst],
IAUIPCJ[curPC , PCimm] -> [newPC, nextinst, jumpreturn],
[JAL[curPC, PCimm] -> [newPC, nextinst, jumpreturn],
[JALR[curPC, PCimm, PCrsl] -> [newPC, nextinst, jumpreturn]};

We notice that the transfer function equations in the body of a component are
AND-OR relations and it occurs that representing all AND-OR relations in the
language the same way would be coherent, uniform and intuitive.

Infix assignment notation Function flow notation

Z/0 = X/0 & Y/O; [X/0, Y/0] -> Z/0;
Z/1=X/1&YIO|X/0&Y/1 el {[X/1, Y/0], [X/O, Y/1]} -> Z/1,
Z/12 = X/2 & YO | X/I1 & Y/1, {[X/2, Y/0], [X/1, YI1]} -> Z/2;
Z/3=X/2&YI1,; [X/2, YI1] -> Z/3;

The expressivity is identical. the mapping is direct. Only the form of the notation changes.

The functional flow notation better represents the flow structure
nature of the language whereas the infix assignment notation
reflects more a nature of ordered events

A language of computation flow that is constructive in contrast to procedural
specifying a a directed network with a protocol of flow.

A0
A/l
B/0
B/1
C/0

C/1

/fromA /fromB /fromC

Select

D/0

D/1

D/0

D/1

D/0

D/1

token bit{0, 1};

token (A, B, C, D)bit

A/O

A/l

/toB

Steer

/toC

/toD

B/O

C/0

D/0

B/1

C/1

D/1

token Select{fromA, fromB, fromC};

(A, B, C, Select -> D)
flow [{A, B, C}, Select] -> D;

Steer

token bit{0, 1},

token (A, B, C, D)bit

token Steer{toB,

toC, toD};

(A, Steer -> B, C, D){
flow [A, Steer] -> {B, C, D};

[steer/toB & A/O]
[steer/toB & A/1]
[steer/toC & A/O]
[steer/toC & A/1]
[steer/toD & A/Q]

steer/toD & A/1]

-> B/0;
-> B/1;
-> CJ/0;
-> C/1;
-> D/0O;
-> D/1;

}
close A <- {#B, #C, #D};

close Steer <- {#B, #C, #D};

close B <- #?;
close C <- #7?;
close D <- #?;

Select

Select/fromA

Select/fromB

Select/fromC

A/O

{[Select/fromA, A/0], [Select/fromB, B/0], [Select/fromC, C/Q]} -> D/0; |
{[Select/fromA, A/1], [Select/fromB, B/1], [Select/fromC, C/1]} -> D/1;

}

close A <- [#D, Select/fromA];
close B <- [#D, Select/fromB];
close C <- [#D, Select/fromC];
close Select <- #D;
close D <- #7?;

B/0O

B/1

C/0

C/1

Steer/toB

Steer/toC

Steer/toD ———

A/Q m—

A/l ————

init

—1..

D/0

A component can be named and referenced.

The boundary becomes formal boundary names with internal
token declarations which can be matched with actual boundary
names with external token declarations.

halfadder

A component with two outputs
token (A, B, S, CO){0, 1}

(A, B->S, CO){
flow [A, B] -> [S, COJ:

{[A/0, B/O], [A/1, B/1]} -> S/O;
{[A/O, B/1], [A/1, B/O]} -> S/1;

{[A/0, B/O], [A/O, B/1], [A/1, B/O]} -> CO/O:

[A/1,B/1] -> CO/1;

}

close A <- [#S, #CQ];,
close B <- [#S, #CQO];
close S <- #7?;

close CO <- #7?;

half-adder @ o<J

halfadd(A, B -> S, CO){
token (A, B, S, CO){0, 1}

flow [A, B] -> [S, COJ;

{[A/O, B/O], [A/1, B/1]} -> S/O;

{[A/O, B/1], [A/1, B/O]} -> S/1:

{[A/O, B/O], [A/O, B/1], [A/1, B/O]} -> COIO;
[A/1,B/1] -> CO/1.:

}

close A <- [#S, #CQ];,
close B <- [#S, #CO];
close S <- #7?;

close CO <- #7?;

An 8 bit incrementer

token(M, N, O)[0,7]{0,1}
tokenP[1,8]{0,1}
halfadd(M/0, 1 -> O/0, P/1)
halfadd(M/1, P/1 -> O/1, P/2)
halfadd(M/2, P/2 -> O/2, P/3)
halfadd(M/3, P/3 -> O/3, P/4)
halfadd(M/4, P/4 -> O/4, P/5)
halfadd(M/5, P/5 -> O/5, P/6)
halfadd(M/6, P/6 -> O/6, P/7)
halfadd(M/7, P/7 -> O/7, P/8)

Program Counter 1

token (cond, dual){1:0};
token (curPC, PCrsl, PCimm, nextinst, newPC, jumpreturn)[31:0][duall;
token PCcontrol{next, branch, JAL, JALR, AUIPC};

(PCcontrol, curPC, cond, PCrs1, PCimm -> nextinst, newPC, jumpreturn){
flow PCcontrol{

[/next curPC] -> [newPC, nextinst],

[/branch, curPC, cond, PCimm] -> [newPC, nextinst],

[/AUIPC, curPC , PCimm] -> [newPC, nextinst, jumpreturn],

[/JAL, curPC, PCimm] -> [newPC, nextinst, jumpreturn],

[/JJALR, curPC, PCimm, PCrsl] -> [newPC, nextinst, jumpreturn]};

PCcontrol{[{/next, /AUIPC, [/branch, cond/F]}, next], [{[/branch, cond/T], /JAL, /JALR}, branch]} -> newPC;
NewPC -> nextinst;
PCcontrol{[{/JAL, /JALR}, next], [[AUIPC, branch]} -> jumpreturn;

T
T increment by 4 /[T
T T
token dual{0,1};

token next[31:0][dual];

token (oldPC, C)[31:0][duall;

[curPC, PCcontrol{/next, /AUIPC, [/branch, cond/F]}] -> oldPC;
oldPC/0 -> next/0;
oldPC/1 -> next/1,
halfaddone(oldPC/2 -> next/2, C/3);
for i1=3:30(
zeroadd(oldPCl/i, C/i -> next/i, C/i+1)

)
zerosum(oldPC/31, C/31 -> next/31);

Program Counter 2

TN
I 32 bit adder T
T
token branch[31:0][dual];

token (alpha], beta, c)[31:0][duall;

I/ steer inputs to adder
PCcontrol{[/JALR, PCrs1/1:31], [{[/branch, cond/T], /JAL, /AUIPC}, curPC/1:31]} -> alpha/1:31;
PCcontrol{[/branch, cond/T], /JJALR, /AUIPC, /JAL}, imm/1:31] -> beta/1:31,
PCcontrol[{[/JALR, 0], [/branch, cond/T], /JAL, /AUIPC}, curPC/0] -> alpha/0;
PCcontrol[{[/JALR, 0], [/branch, cond/T], /JAL, /AUIPC}, imm/Q] -> beta/0;
halfadd(alpha/0, beta/O -> branch/0, c/1);
for i=1:30(

fulladd(c/i, alphal/i, beta/i -> branchli, c/i+1);

)
sum(alpha/31, beta/31 -> branch/31);

close newPC <- #?;
close nextinst <- #?:
close jumpreturn <- #7?;

