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The NULL Convention
Given an element with two distinct states such as high and low voltage on an electronic wire
we assign one state to mean “data” and the other state to mean “not data”, which we will call
NULL. This is in contrast to assigning both states a data meaning such as 0,1 or True, False.

The Multi-rail Convention
With only one data state data variables will be multi-rail encoded. A binary variable will be
dual-rail encoded with two wires, one meaning 0 the other meaning 1, only one of which will
be data at a time.

The Completeness Convention
We define patterns of each state that represent completeness. Consider the output of a dual-
rail ripple carry adder which begins with all rails null. Inputs transition to data and output rails
begin transitioning to data. When the add is done exactly one rail of each output dual-rail
variable has transitioned to data which is a data state completeness pattern upon the occurrence
of which the input can begin transitioning to null. All output rails transitoned to null is a null
state completeness pattern upon the occurrence of which the input can begin transitioning
to data and so on...
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Logic operators with a completeness threshold for DATA
and a completeness threshold for NULL:

• transitions its output to DATA only when its data threshold is met,
• transitions its output to NULL only when its input is completely NULL and
• maintains its output when its input is between the two thresholds
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NCL Dual Threshold Logic Functions
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Movie discusion



Self Coordination: The Oscillation

The expression is purely in terms of logical relationships
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oscillation period 20 gate delays
data path latency 7 gate delays
1 oscillation
26 cells
11-13 signal transitions

The oscillation Link coordinates flow from oscillation to oscillation

When linked oscillations present data to a link it will pass a data wave and maintain
the data wave until the oscillations present null

When linked oscillations present null to a link it will pass a null wave and maintain
the null wave until the oscillations present data
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Since the combinational expression and the link are both in
terms of logical relations they can be optimized together

1

1

00

01

10

11

00

01

10

11

0

1

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

2

2

link

closure

closure

link

1

0
S

CO
1

0
half-adder half-adder

closure0

1

0

1

00

01

10

11
OR

3

3

3

3

1

links

1
2

2

2

2

2

2

1

1

0

1

0

1
B

A

0

1
CI

closure

closure

closure

integrate combinational logic and link
oscillation period 18 gate delays
data path latency 6 gate delays
1 oscillation
24 cells
10-12 signal transitions

1

1

00

01

10

11

00

01

10

11

0

1

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

2

2

2

2

link

closure

closure

link

1
2

2

2

2

2

2

1

1

links

0

1

0

1
B

A

0

1
CI

1

0
S

CO
1

0
closure0

1

0

1

00

01

10

11

2

2

2

2

1

closure

closure

closure
half-adderhalf-adder

OR

oscillation period 20 gate delays
data path latency 7 gate delays
1 oscillation
26 cells
11-13 signal transitions



finer oscillation granularity
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Other combinational ranks can be made a link
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