
Flow Structure and Completeness

Karl Fant

April, 2015

Tokens declare units of flow completeness.

There are no predefined tokens.

Tokens are defined from scratch as a hierarchy of name relations.

The leaves of the hierarchy - the terminal names - represent single rails.

The hierarchy is structured in terms of AND-OR relations.

The AND relation indicates tokens that must all be present for completeness.

The OR relation indicates tokens only one of which must be present for completeness.

In a token declaration brackets [] encompass AND related tokens and braces { } encompass OR
related tokens.

A range can be specified for token names

[0-9] specifies AND related names 0, 1 ... 8, 9

{B-F} specifies OR related names B, C ... E, F

[bit(S-Z)] specifies AND related names bitS, bitT ... bitY, bitZ

{bit(0-9)} specifies OR related names bit0, bit1 ... bit8, bit9

 A name range may imply ordering but does not specify an ordering.
Ordering arises from the flow of reference to the names.
How the carry associates from name to name in a numeric addition for instance.

The token structure is just a name referencing scheme that includes a completeness property in the AND-
OR relations.

Flow Tokens

Binary digit
token bit{1,0}; //declares a two rail token named bit with OR related

rail names 0,1

bit/0 ... bit/1

token (X, Y)[bit]; //declares X and Y as two rail tokens with OR related
rail names 0,1. previously declared bit is used as a
template

token X{1,0}, Y{1,0};

X/0 ... Y/1

2

2
1

X/0

X/1

Y/0

Y/1

Binary number
token byte[0-7][bit]; token byte[0-7]{0,1};

byte/0/1 ... byte/1/0 ... byte/7/1 ... byte/5/0

token (A, B, C)[byte];

A/5/0 //refers to rail named 0 of digit 5 of A
B // refers to the entire structure of B
A/4 // refers to digit 4 of A

Tokens with numeric values and structures

token bit{1,0};
token (X, Y)[bit];
(X -> Y)

completeness of Y = #Y = Y/0 | Y/1;

completeness of B = #B = (B/0/0 | B/0/1) & (B/1/0 | B/1/1) & (B/2/0 | B/2/1) & (B/3/0 | B/3/1) &
(B/4/0 | B/4/1) & (B/5/0 | B/5/1) & (B/6/0 | B/6/1) & (B/7/0 | B/7/1);

token bit{1,0};
token byte[bit][0-7];
token (A, B, C)[byte];

(A -> B)

2

2

2

2

2

2

2

2

1

1

1

1

2

2

2

2

2

2

2

2

1

1

1

1

A/0/0

A/0/1

A/1/0

A/1/1

A/2/0

A/2/1

A/3/0

A/3/1

A/4/0

A/4/1

A/5/0

A/5/1

A/6/0

A/6/1

A/7/0

A/7/1

B/0/0

B/0/1

B/1/0

B/1/1

B/2/0

B/2/1

B/3/0

B/3/1

B/4/0

B/4/1

B/5/0

B/5/1

B/6/0

B/6/1

B/7/0

B/7/1

4

4
2

Trinary
token trit{2-0};

trit/0 ... trit/1 ... trit/2

token (M,N)[trit];

M/0 ... M/1 ... N/2 ... N/3

Decimal
token dit{9-0};

dit/0 ... det/6 ... det/9
token decimal[0-9][dit];

decimal/0/1 ... decimal/1/3 ... decimal/7/9 ... decimal/5/0

Tokens with numeric values and structures

Quaternary
token quat{3-0};

quat/0 ... quat/1 ... quat/2 ... quat/3

token (X,Y)[quat];

X/0 ... X/1 ... Y/2 ... Y/3

A/2/3 // references rail named 3 of quaternary digit 2 of A
A // refers to the entire structure
B/3 // refers to digit 3 of B

1

2

2

2

M/0

M/1

N/0

N/1

M/2 N/2

1

2

2

2

2

X/0

X/1

Y/0

Y/1

X/2

X/3

Y/2

Y/3

token trit{2-0};
token (M, N)[trit];
(M -> N);

token quat{3-0};
token (X,Y)[quat];
(X -> Y);

completeness of N = #N = N/0 | N/1 | N/2;

completeness of Y = #Y = Y/0 | Y/1 | Y/2 | Y/3;

completeness of B = #B = (B/0/0 | B/0/1 | B/0/2 | B/0/3) & (B/1/0 | B/1/1 | B/1/2 | B/1/2)
& (B/2/0 | B/2/1 | B/2/2 | B/2/3) & (B/3/0 | B/3/1 | B/3/2 | B/3/3);

token quat{3-0};
token qbyte[0-3][quat];
token (A,B)[qbyte];
(A -> B)

1

1

2

2

2

2

2

2

2

2

1

1

2

2

2

2

2

2

2

2

4

A/0/0

A/0/1

A/0/2

A/0/3

A/1/0

A/1/1

A/1/2

A/1/3

A/2/0

A/2/1

A/2/2

A/2/3

A/3/0

A/3/1

A/3/2

A/3/3

B/0/0

B/0/1

B/0/2

B/0/3

B/1/0

B/1/1

B/1/2

B/1/3

B/2/0

B/2/1

B/2/2

B/2/3

B/3/0

B/3/1

B/3/2

B/3/3

Floating point
token bit{0,1};
token sign[bit];
token mantissa[0-22][bit];
token exponent[0-7][bit];
token float[sign, exponent, mantissa];
token (A, B, C)[float];

references
A
A/sign
C/mantissa/21
B/mantissa/21/0
C/exponent/4/1

token bit{1,0};
token (A, B)[bit];
token trit{2-0};
token (M,N)[trit];
token quat{3-0};
token (X,Y)[quat];
token in[X, A, M];
token out[Y, B, N];
(in -> out);

completeness of out = #out = (out/Y/0 | out/Y/1 | out/Y/2 | out/Y/3) & (out/B/0
| out/B/1) & (out/N/0 | out/N/1 | out/N/2);

Tokens with heterogeneous numeric values and structures

2

2
1

in/A/0

in/A/1

out/B/0

out/B/1

1

2

2

2

2

in/X/0

in/X/1

out/Y/0

out/Y/1

in/X/2

in/X/3

out/Y/2

out/Y/3

1

2

2

2

in/M/0

in/M/1

out/N/0

out/N/1

in/M/2 out/N/2

3

Categories
token family{mother,father, sister, brother};
token (Smith, Jones, Hitchkock)[family];

references
Smith/mother ... Jones/brother

Kitchen measures
token tbsp{empty,full};
token cup[tbsp(1-16)][tbsp];
token quart[cup(0-7)][cup];
token (A, B, C)[quart];

references
A/cup5/tbsp1/full //refers to the full rail of tbsp 1 of cup 5 of quart A
A // refers to quart A
B/cup4 // refers to cup 4 of B
C/cup7/tbsp5 //refers to tbsp 5 of cup 7 of quart C

Non numeric tokens

Records and Emptyness

token empty;
token bit{1,0};
token (A, B)[bit];
token trit{2-0};
token (M,N)[trit];
token quat{3-0};
token (X,Y)[quat];
token in{[empty], [X, A, M]}
token out{[empty], [Y, B, N]};
(in -> out);

completeness of out = #out = ((out/Y/0 | out/Y/1 | out/Y/2 | out/Y/3) & (out/B/0 | out/B/1) &
(out/N/0 | out/N/1 | out/N/2)) | out/empty;

A flow structure that may have a value or be empty such as a field of a data base record
can contains a single rail indicating empty as well as the structure that may contain content.

So there is another level of OR relation to the flow structure.

Empty functions like zero as a place holder in a structure meaning this place is empty.

The flowing the record is empty or it has content.

2

2
1

in/A/0

in/A/1

out/B/0

out/B/1

1

2

2

2

2

in/X/0

in/X/1

out/Y/0

out/Y/1

in/X/2

in/X/3

out/Y/2

out/Y/3

1

2

2

2

in/M/0

in/M/1

out/N/0

out/N/1

in/M/2 out/N/2

3
1

in/empty out/empty2

The AND-OR Counterpoint

AND relations provide a constant referent structure within which variable OR relations flow
forming the essential counterpoint of computation.

Variation in relation to stable referent.

Neither has meaning without the other.

Token declarations are the primitive specification of this AND-OR flow structure.

An 8 bit number always has 8 bits whose values (rails) may vary as they flow through transform
functions but there is always a constant 8 bits.

