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{[A/0, B/O], [A/1, B/1]} -> sum/O:
{[A/1, B/Q], [A/O, B/A]} -> sum/1;

A/

B/
0 1
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carry/
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{[A/0, B/O], [A/1, B/O], [A/O, B/1]} -> carryout/O;
[A/1, B/1] -> carryout/1;

Symbolic specification

Il specify the half add component
halfadd(A, B -> sum, carryout){
flow [A, B] -> [sum, carryout];
token {0:1} A, B, sum, carryout;
{[A/0, B/O], [A/1, B/1]} -> sum/0;
{[A/1, B/O], [A/O, B/1]} -> sum/1;
{[A/0, B/O], [A/1, B/O], [A/O, B/1]} -> carryout/O;
[A/1, B/1] -> carryout/1;
close A <- [sum/#, carryout/#];
close B <- [sum/#, carryout/#];

}
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Input incompleteness for carry

Given two output flow paths of a single shared completeness behavior If the completeness of transition
one output flow implies the completeness of transition of the input flow then the other output flow
need not imply the completeness of input but only the completeness of propagation and the
correcctness of the output. The AND of the completeness of the two output flows closes with the
input and fulfills the completeness criterion

In the case of the half adder the sum implies the completeness of the input so the carry can be
generated with partial input. Specificaly, if A/O then carry/O and it is not necessary to wait on B to
generate the carry. In the case of the counter B will be the carryin from the lower order digit. So to
generate carryout half the time we will not have to wait on carryin.
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Composing the half adder ring

initialize data wavefront

sum/0

B/O

- — O
_@_EL @_& gg B/l—I

sum/1

< AJO - ;
- <y 1 TR N sumCOMP
buffer component data initialization buffer components N i [_’/\ :2 @_ carry/o
-> - -
(count -> D) (D ->A) (A->B) CZ C ETF L
. e . Oq
Symbolic .sp.emflcatlo.n sumcarryCOM@ S=TOWE
Il compose the digit halfadd ring halfaddA component
digit_count(carryin -> carryout, count){
flow carryin -> [count, carryout]; halfadd(B, carryin -> count,carryout)

token {0:1} carryin, carryout, count, B, D, A(0);
halfadd(B, carryin -> count,carryout) :
(oount >D) halfadd ring counter component
> : carryin
(A->B); o 1
close carryin <- {carryout/#, count/#]; carryinCOMP u2
close count <- [D/#, ?/4#];
close carryout <- ?/#;

}
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1
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Canonical composition

direct mapping from
symbolic specification

Symbolic specification

/Il sink the flow path
(count ->
flow count -> ;
token count[0:31{0:1};
path count/i <

(count/i ->);
>

}

I/l compose the flow path
counter( -> count){
flow -> count;
token count[0:31{0:1};
token carry[0:32]{0:1};
path count/i <
(1 -> carry/0);
digit_count(carry/i -> count/i, carry/i+1)
(carry/max(i)+1 ->));

>
close count <- ?/#;
}
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Cost reduction
of carry pipeline
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Imposition of full token
completeness

fullword _counter32A.v
fullword _counter32B.v

fullword-counter_ringA.v
fullword-counter_ringB.v

The flowing wavefronts will
conform to whatever logical
constraint is imposed

counter( -> count){
flow -> count;
token count[0:31]{0:1};
token carry[0:32]{0:1};
path count/i <
(1 -> carry/0);
digit_count(carry/i -> count/i, carry/i+1)
(carry/max(i)+1 ->));
>
close count <- ?/#;

}

Close count <- ?/#

specifies that the complete token
has to be closed each oscillation but
it does not specify how the closure
must occur.
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Fully integrated

combinational logic

No gate in the circuit is

performing solely combination
service. Every gate in the circuit
IS performing flow coordination
duty and a few are also
performing combinational duty.
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@ 2 Q = carry/l

A long delay gate creates a long
period oscillation which paces the
rest of the circuit. Consequently it
Is slower than the non integrated
circuit. But it is fewer gates.
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Fully integrated
combinational logic

No gate in the circuit is
performing solely combination
service. Every gate in the circuit
IS performing flow coordination

duty and a few are also
performing combinational duty.

twoDint_counter32C.v
twoDint_counter_ringC.v

shorter delay gate: 2 oscillations

half adder component

The combinational work is
distributed over two oscillations
with shorter periods. The circuit as
a whole flows faster. but it has more
gates and more transitions.
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