Al

0
0l o 1
sum/
1 1 0

{[A/0, B/O], [A/1, B/1]} -> sum/O:
{[A/1, B/Q], [A/O, B/A]} -> sum/1;

A/

B/
0 1
OF 0 0
carry/
1] O 1

{[A/0, B/O], [A/1, B/O], [A/O, B/1]} -> carryout/O;
[A/1, B/1] -> carryout/1;

Symbolic specification

Il specify the half add component
halfadd(A, B -> sum, carryout){
flow [A, B] -> [sum, carryout];
token {0:1} A, B, sum, carryout;
{[A/0, B/O], [A/1, B/1]} -> sum/0;
{[A/1, B/O], [A/O, B/1]} -> sum/1;
{[A/0, B/O], [A/1, B/O], [A/O, B/1]} -> carryout/O;
[A/1, B/1] -> carryout/1;
close A <- [sum/#, carryout/#];
close B <- [sum/#, carryout/#];

}

half-adder Half Adder C

|<a| |@‘

> carryout

=
@
i
<

half-adder sum

B/ Half Adder Component

B/0O

B/lﬁ

A/O

A/l

half-adder

carryout

sumcarryCOMP

O,

carryCOMP

sum/0

sum/1

carry/O

carry/l

Input incompleteness for carry

Given two output flow paths of a single shared completeness behavior If the completeness of transition
one output flow implies the completeness of transition of the input flow then the other output flow
need not imply the completeness of input but only the completeness of propagation and the
correcctness of the output. The AND of the completeness of the two output flows closes with the
input and fulfills the completeness criterion

In the case of the half adder the sum implies the completeness of the input so the carry can be
generated with partial input. Specificaly, if A/O then carry/O and it is not necessary to wait on B to
generate the carry. In the case of the counter B will be the carryin from the lower order digit. So to
generate carryout half the time we will not have to wait on carryin.

B/O 2 sum/0 Half Adder A
carryin
jp— & Th h
<2>_ sum/l e carry orphan
A0 4 : : by causes a wait for the
' N~ sumCOMP null carry ripple
A/l 'Lsz <2>— ? carry/0 Y 1pp
H e e CAITY/ 1
20) =
sumcarryCOMP carryCOMP
Half Adder B
B/O sum/0
carryin

B/1 _I

[o
A/O -
A/l - L‘

sumcarryCOMF{D carryCOMP

The carry orphan does
not cause a wait for
the null carry ripple

Composing the half adder ring

initialize data wavefront

sum/0

B/O

- — O
_@_EL @_& gg B/l—I

sum/1

< AJO - ;
- <y 1 TR N sumCOMP
buffer component data initialization buffer components N i [_’/\ :2 @_ carry/o
-> - -
(count -> D) (D ->A) (A->B) CZ C ETF L
. e . Oq
Symbolic .sp.emflcatlo.n sumcarryCOM@ S=TOWE
Il compose the digit halfadd ring halfaddA component
digit_count(carryin -> carryout, count){
flow carryin -> [count, carryout]; halfadd(B, carryin -> count,carryout)

token {0:1} carryin, carryout, count, B, D, A(0);
halfadd(B, carryin -> count,carryout) :
(oount >D) halfadd ring counter component
> : carryin
(A->B); o 1
close carryin <- {carryout/#, count/#]; carryinCOMP u2
close count <- [D/#, ?/4#];
close carryout <- ?/#;

}

sum
1

Red names indicate —-<>
corespondences in the o
N

verilog code

twoD-counter_ringA.v @ BCOM CComP
twoD-counter_ringB.v carryCOMP SarmyCOMP
twoD-counter_ringC.v NA 85;

u

&

carryoutCOMP 1 0
carryout

ulo

Canonical composition

direct mapping from
symbolic specification

Symbolic specification

/Il sink the flow path
(count ->
flow count -> ;
token count[0:31{0:1};
path count/i <

(count/i ->);
>

}

I/l compose the flow path
counter(-> count){
flow -> count;
token count[0:31{0:1};
token carry[0:32]{0:1};
path count/i <
(1 -> carry/0);
digit_count(carry/i -> count/i, carry/i+1)
(carry/max(i)+1 ->));

>
close count <- ?/#;
}
constant 1 sink
component component
0 —@§iﬂk
—1 —
oIy _9-

carryin
o1

halfaddA

u6 .
count 0 sink
cio o @'@ n 2 é
u3) |
D ud A ul B Ci]l=ns @_ 1 2 _
a . <>'@ 5011 T THXOR: Bod SUMCOMP oJ
C‘f\f] DCOMP (};%@——B—lﬂ CCOMP2
AN
ccompP
carryCOMP carryCOMP
twoD_counter32A.v &
twoD_counter32B.v)
— 0
twoD_counter32C.v ._|@|
—_ carryout
carryinof 1| halfaddA
0 sink
cio || ‘e
u3 D ud A ul B Cill=s) 1 2 _G>
G- %"_@@ el aumcoup_ L3
= DCOMP [Acomp @' BL || CComP2
AN
CCOMP
carryCOMP carryCOMP
twoD-counter_ringA.v
twoD-counter_ringB.v
twoD-counter_ringC.v —
carryin of 1T
0 sink
cio an
u3 D usd A ul Ci1 = 1 . -G>
sumCOMP o<

‘ _@_B -
: S It _C B0
o DEOMP ACOMP O BL ||
N o<}

carryout | ; |

1 0

Cost reduction
of carry pipeline

digit_counter32A.v
digit_counter32B.v

digit-counter_ringA.v
digit-counter_ringB.v

carryin o 1

sumCOMP

halfadd ring counter component

digit_counter_ringA.v cio

u3

4 i
D u A ul B Cil!

Be

4l

DCOMP C >
<] ACOMP

carryCOMP

&
— ——
Bl

carryout

carryin 0 | 1

halfadd ring counter component

3 D ud ul Cil

ST
%L o

roeECs 5
QLQ & O
DCOMP @' —
ACOMP Bl
o< CO
AN 1
BCOM CCOMP
carryCOMP
carryout |
carmin N sumCOMP
Mol

halfadd ring counter component

cio
2D A oo On
T
@ 0
= DCOMP ([AcomP @' @ BL |
AN

carryCOMP

CCOMP2

: CCOMP haCOMP

I carryout

0 - S|Ek

sum @

1 > -
o

0 - S|1k

sum @

1 > -
o
haCOMP

0 - S|1k

sum @

1 > _
o

Imposition of full token
completeness

fullword _counter32A.v
fullword _counter32B.v

fullword-counter_ringA.v
fullword-counter_ringB.v

The flowing wavefronts will
conform to whatever logical
constraint is imposed

counter(-> count){
flow -> count;
token count[0:31]{0:1};
token carry[0:32]{0:1};
path count/i <
(1 -> carry/0);
digit_count(carry/i -> count/i, carry/i+1)
(carry/max(i)+1 ->));
>
close count <- ?/#;

}

Close count <- ?/#

specifies that the complete token
has to be closed each oscillation but
it does not specify how the closure
must occur.

sumCOMP

carryin g 1 [}
[
.......... []
halfadd ring counter component ; <“6>_C o sink
. 2) —
cio H)_(QB_E @ sum @
u3 . '
ud 1 Ci1 = : 1
A —G- 3=
> R L
@% @ @- @ BO N Do
°N<] DCOMP ” ACOMP T CCOMP2
AN
CCOMP
carryCOMP carryout @
carryin o | 1 SUmCOMP
halfadd ring counter component U o sink
@- 2 —
Cio
@ sum @
u3
ud 1 Ci] g 1
Tt} G- pan
— o]
oS LG T N >
°N<] DCOMP L ACOMP @- T CCOMP2 haCOMP
AN @
CCOMP
carryCOMP
carrxout
canyin N sumCOMP
0 11
halfadd ring counter component 5 CUG>-C . sink
" 2 2 —
cio =So{ THXOR: Q sum Q
u3) '
u4 1 Ci] s ' 1
D ~ B n @- 2 e
— xeR e
- LG ST : >
o DCOMP ACOMP @' BL | CCPOMP2
N o< Py
AN °
[]

carryCOMP

I carryout

: CCOMP haCOMP

Fully integrated

combinational logic

No gate in the circuit is

performing solely combination
service. Every gate in the circuit
IS performing flow coordination
duty and a few are also
performing combinational duty.

2 6
: D @ sum/0
] B/0O n@ '
carryin T THXOR:
B/1 =g | FT*T o6, @
a]
[1 - 2 —— ST/
AJQ = (_ 2 " _H_)_(;gR:
A/l m=e ’2\ G : carry/0

@ 2 Q = carry/l

A long delay gate creates a long
period oscillation which paces the
rest of the circuit. Consequently it
Is slower than the non integrated
circuit. But it is fewer gates.

B/O
carryin
B/

AJQ =

A/l = F carry/0
;} — C3ITY/1

twoDint_counter32A.v
twoDint-counter_ringA.v ¢ i

carryin

long delay gate: 60 ps

halfaddA

D

............

: --------- sumCOMP
o -2COMP CCOMP2
" ©
CCOMP
carryCOMP
0
carryout
carryin of 1 halfaddA
U6 count o
cio | wn
u3) @
u4 Cill 1
D—Q-Q G -
@ Q- @ sumCOMP
:jxﬂDCOMP ACOMP <:>- CCOMP2
N < An
CCOMP
carryCOMP X GamycompP
1 0
N @
carryin g
U6 count L o
Cio sum
u3) 1 @
u4 ul 1
D—Q-Q >
@ 2N @ sumCOMP
°<]DCOMP ACOMP <E>- CCOMP2
N o<l
AN
CCOMP
carryCOMP caryCOMP

carryout

1 0
e

Fully integrated
combinational logic

No gate in the circuit is
performing solely combination
service. Every gate in the circuit
IS performing flow coordination

duty and a few are also
performing combinational duty.

twoDint_counter32C.v
twoDint_counter_ringC.v

shorter delay gate: 2 oscillations

half adder component

The combinational work is
distributed over two oscillations
with shorter periods. The circuit as
a whole flows faster. but it has more
gates and more transitions.

integrated half adder component

N

o

suminCOMP

CCOMP

carryin | Jo J1 halfaddA
1 3 count
QN =
\
. 8O3 @&
D u4 ul :E}
ﬂa\ B {3 2
_(::>.— =3 N
Doomp S S ——— =1 A
°N<] ACOMP — Bl BCOMP e @
N
minCOMP D AN
carryout
carryin | Jo |1 halfaddA
3% count
D -
\
. e e @&
D ud A ul o
’ _@_B_ {3 N
™ 2
°N<] ACOMP — Bl BCOMP e @
N
minCOMP D AN
carryout
carryin | Jo J1 halfaddA
1 3 count
QN =
\
. 8O3 @&
D w o ul 0 :E}
ﬂw‘B_ {3 N
BO
°N<1 ACOMP = Bl BCOMP @
. (2l
minCOMP D AN
carryout
carryin 0 1

CCOMP

CCOMP

