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The notion of the algorithm is fundamental 
to mathematics. It is also regarded as fundamental 
to computer science. Yet, as we will argue, the 
concerns of mathematics are quite different from 
the concerns of computer science, and the notion 
of the algorithm has been largely ineffective as a 
paradigm for computer science. Because of its 
focus on what are primarily mathematical 
concerns, it provides narrow and even 
innappropriate guidance to the practicing 
computer scientist. As a preface to our arguments, 
we first review the history of the notion of the 
algorithm in mathematics and its evolution into 
the current foundations of computer science.

1. The Notion of the Algorithm in 
Mathematics

To understand the significance of the 
notion of the algorithm in mathematics it is 
necessary to understand the history of its 
developement. The term “algorithm” derives from 
the name of an important ninth century Persian 
mathematician named Mohammed ibn Musa al-
Khowarizmi, who, in about 825 A.D., wrote a 
small book describing how to calculate with a 
new ten symbol, positional value number system 
developed in India. It described simple procedures 
for carrying out addition, subtraction, 
multiplication and division in the new system.  
Around 1120 this small book was translated into 
Latin under the title Liber Algorismi de numero 
Indorum (The Book of al-Khowarizmi on the 
Hindu number system). This translation was 
widely distributed and introduced the Hindu-
Arabic number system to Europe. By the mid 
thirteenth century al-Khowarizmi had been quite 
forgotten and the term algorism (Latin for al-
Kowarizmi's book) had come generally to refer to 
computation in the new number system. At this 
time an algorism was any book related to the 
subject. The algorisms were the four arithmetic 
operations. An algorist was one who calculated in 

the new number system as opposed to an abacist 
who used an abacus. By 1500 the algorists had 
prevailed and the abacists had largely disappeared 
from Europe. 

These algorisms were strictly mechanical 
procedures to manipulate symbols.  They could be 
carried out by an ignorant person mechanically 
following simple rules, with no understanding of 
the theory of operation, requiring no cleverness 
and resulting in a correct answer. The same 
procedures are taught to grade school children 
today.  Computing with Roman numerals on the 
other hand required considerable skill and 
ingenuity. There also existed at this time other 
examples of mechanical formulation such as 
Euclid's method to find the greatest common 
denominator of two numbers. The fact that dumb 
mechanical manipulations could produce 
significant and subtle computational results 
fascinated the medieval mathematicians. They 
wondered if it was possible that the whole of 
mathematics or even all of human knowledge 
could be mechanically formulated and calculated 
with simple rules of symbol manipulation.

Leibniz attempted just such a formulation 
in the 1660s with his calculus ratiocinator and 
characteristica universalis. The object was to 
"enable the truths of any science, when 
formulated in the universal language, to be 
computed by arithmetical operations"[1]. 
Arithmetical here refers to the algorisms.   Insight, 
ingenuity and imagination would no longer be 
required in mathematics or science. Leibniz did 
not succeed and the idea lay fallow for two 
hundred years.

During this period, Euclidean geometry, 
with its axioms and rules of reasoning from the 
simple to the complex continued to reign as the 
fundamental paradigm of mathematics. In the 
1680's, after the invention of analytical geometry 
and having made new discoveries with his own 
invention of his fluxional calculus, Newton was 
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careful to cast all the mathematical 
demonstrations in his presentation of these new 
discoveries in Philosophiae naturalis principia 
mathematica in classical Euclidean geometry. A 
symbolic analytical presentation would neither 
have been understood nor accepted by his 
contemporaries. Geometry, which dealt with 
relationships among points, lines and surfaces, 
was intuitive, obvious and real. Algebra dealt with 
arbitrary symbols related by arbitrary rules and 
did not relate to any specific reality. While algebra 
was practical and useful it was not considered fit 
terri tory for fundamental theoretical 
consideration. Late into the nineteenth century 
symbolic computation was distrusted and 
discounted. This attitude is exemplified by a 
nineteenth century astronomer who remarked that 
he had not the "smallest confidence in any result 
which is essentially obtained by the use of 
imaginary symbols"[2]. 

The dream of formalizing thought in terms 
of mechanical manipulation of symbols 
reemerged with the symbolic logic of George 
Boole presented in his book Laws of Thought in 
1854. Boole argued persuasively that logic should 
be a part of mathematics as opposed to its 
traditional role as a part of philosophy. Frege went 
several steps further and suggested that not only 
should logic be a part of mathematics but that 
mathematics should be founded on logic and he 
began a program to derive all of mathematics in 
terms of logic.

Meanwhile the paradigmatic edifice of 
Euclidean geometry was beginning to show 
cracks with the discovery of non Euclidean 
geometries which were internally consistent and 
were therefore mathematical systems just as valid 
as Euclidean geometry. Symbolic computation 
achieved paradigmatic preeminence with the 
publication in 1899 of Hilbert's characterization of 
Euclidean geometry in terms of algebra, 
Grundlagen der Geometrie (Foundations of 
Geometry) which emphasized the undefined 
nature of the axioms. "One must be able to say at 
all times-instead of points, straight lines and 
planes- tables, chairs and beer mugs"[3].   
Euclidean geometry was after all just one of many 

possible axiomatic symbolic computation 
systems.

As the twentieth century dawned symbolic 
computation had been established as the arena of 
mathematical theorizing and logical axiomatic 
systems provided the rules of the game.  The 
mathematicians were hot on the trail of settling 
the game once and for all. They seemed to be on 
the verge of fulfilling Leibniz's dream of the 
universal symbolic language that would proffer 
absolute certainty and truth.  The quest was led by 
David Hilbert who outlined a program to settle 
once and for all the foundational issues of 
mathematics. The program focused on the 
resolution of three questions.  

1. Was mathematics complete in the sense 
that every statement could be proved or 
disproved?  

2. Was mathematics consistent in the sense 
that no statement could be proved both 
true and false?  

3. Was mathematics decidable in the sense 
that there existed a definite method to 
determine the truth or falsity of any 
mathematical statement?[4]   

 
The definite method of decidability in 

question 3 was the modern incarnation of 
Leibniz's arithmetical operations on his universal 
symbolic language. Mechanical symbol 
manipulation reemerges at the very foundations of 
modern theoretical mathematics.

Hilbert firmly believed that the answer to 
all three questions was 'yes', and the program was 
simply one of tidying up loose ends. Hilbert was 
convinced that an unsolvable mathematical 
problem did not exist, "every mathematical 
problem must necessarily be susceptible to an 
exact statement, either in the form of an actual 
answer to the question asked , or by the proof of 
the impossibility of its solution"[5]. 

In 1931 Kurt Godel demonstrated that any 
axiom system expressive enough to contain 
arithmetic could not be both complete (there 
existed statements that could not be proved either 
true or false) and consistent (free of 
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contradictions) in the terms of the axiom system.  
This result was the death knell for Hilbert's 
program. The answers to the first two questions 
were no. There remained the third question of 
decidability. The entscheidungsproblem as Hilbert 
named it: the definite method of solving a 
mathematical problem. After Godel proved that 
unsolvable problems (unprovable theorems) could 
exist in an axiom system the decidability problem 
became a search for a definite method to 
determine if a given problem was solvable or 
unsolvable in a given axiom system. 

The decidability problem appealed directly 
to the notion of a definite method which was also 
referred to as an effective procedure or a 
mechanical procedure. This notion had always 
been fundamental to mathematics but had been 
intuitively accepted and had not been a subject of 
investigation itself. One knows an effective 
procedure when one sees one. But to demonstrate 
something about the nature of effective 
procedures there must be a precise 
characterization of what constitutes an effective 
procedure.

Hilbert made it clear what constituted an 
acceptable mathematical solution in his 1900 
paper posing 23 problems which he considered 
important to the future of mathematics.

 
 "that it shall be possible to establish the 
correctness of a solution by means of a finite 
number of steps based upon a finite number of 
hypotheses which are implied in the statement of 
the problem and which must always be exactly 
formulated." [5, p. 275] 

 
Satisfactorily characterizing this notion of 

effective or mechanical procedure became an 
important foundational issue in mathematics and 
several mathematicians applied themselves to the 
problem. Among them were Herbrand and Godel, 
Post, Turing, Church and Markov. Each had a 
different characterization of effective 
computability which were all shown later to be 
logically equivalent. In 1936 both Church with his 
lambda calculus and Turing with his machine 
proved that no effective procedure existed to 
determine the provability or unprovability of a 

given mathematical problem. The answer to 
Hilbert’s third question was also no. Leibniz's 
calculus ratiocinator with its arithmetical 
resolution of all questions was not possible.  
Ingenuity, insight and imagination cannot be done 
away with in mathematics after all.

 In spite of the failure of Hilbert’s 
program, questions of effective computability 
have continued to be a fundamental concern of 
mathematicians. Through the 40s and 50s A. A. 
Markov tried to consolidate all the work of the 
others on effective computability and introduced 
the term algorithm with its modern meaning as a 
name for his own theory of effectively 
computable functions. In the translated first 
sentence of his 1954 book Teoriya Algorifmov 
(Theory of Algorithms) he states;

 
"In mathematics, "algorithm" is commonly 
understood to be an exact prescription, defining a 
computational process, leading from various 
initial data to the desired result."[6] 

 
The term algorithm was not, apparently, a 

commonly used mathematical term in America or 
Europe before Markov, a Russian, introduced it.  
None of the other investigators, Herbrand and 
Godel, Post, Turing or Church used the term.  The 
term however caught on very quickly in the 
computing community. In 1958 a new 
programming language was named ALGOL 
(ALGOrithmic Language). In 1960 a new 
department of the Communications of the ACM 
was introduced called "Algorithms".[7] 

Historically the notion of the algorithm 
was developed to investigate the foundations of 
mathematics and has evolved in relation to the 
needs of mathematicians. The notion of the 
algorithm in mathematics is a limiting definition 
of what constitutes an acceptable solution to a 
mathematical problem. It establishes the ground 
rules of mathematics.

2. The Advent of Computers     
The electronic digital computer emerged 

in 1945.  It computed one step at a time, was by 
practical necessity limited to a finite number of 
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steps and was limited to a finite number of exactly 
formulated hypotheses (instructions). The 
electronic digital computer was an incarnation of 
the mathematician’s effective solution procedure.  
The mathematicians, being intimately involved 
with the creation of the computer, having studied 
mechanical computation for half a century, and 
having in hand an explicitly mechanical model of 
computation in the Turing machine, quite 
reasonably became the defacto theorists for this 
new phenomenon. One of these mathematicians,  
John Von Neumann, was a student of Hilbert's and 
a significant contributor to his program to resolve 
the foundations of mathematics. Another was of 
course Turing himself. The related mathematical 
concepts along with the notion of the algorithm 
were transplanted into the fledgling science of 
computers.  

The notion of the algorithm is accepted 
today, by leading computer scientists such as 
Donald Knuth and by leading philosophers such 
as Zenon Pylyshyn, as a fundamental paradigm of 
computer science.

 
"The notion of the algorithm is basic to all 
computer programming..."[8]   

"One of the concepts most central to computer 
science is that of an algorithm."[9] 

We have seen that the algorithm concept 
was used and developed as a tool for the study of 
the foundations of mathematics, was applied by 
mathematicians to the design of computers and is 
now regarded as a core concept in computer 
science. But how relevant is this notion to 
computer science?

3. The Notion of the Algorithm in 
Computer Science

Introductory texts on computer science 
often begin with a chapter on the notion of the 
algorithm, declaring it the fundamental paradigm 
of computer science.  Conspicuously absent from 
these introductory chapters is a discussion of how 
the notion contributes to the resolution of 
significant problems of computer science. In the 

remaining chapters of these texts there is typically 
no further appeal to the notion of the algorithm 
and rarely even a usage of the word itself. The 
notion is never or very rarely appealed to in texts 
on logic design, computer architecture, operating 
systems, programming, software engineering, 
programming languages, compilers, data 
structures and data base systems.  

The notion of the algorithm is typically 
defined by simply presenting a list of properties 
that an expression must posses to qualify as an 
algorithm. The following definition of an 
algorithm is typical.

1. An algorithm must be a step by step 
sequence of operations

2. Each operation must be precisely defined
3. An algorithm must terminate in a finite 

number of steps
4. An algorithm must effectively yield a 

correct solution
5. An algorithm must be deterministic in 

that given the same input it will always 
yield the same solution

 
This is pretty much what Hilbert proposed 

in 1900 and it is easy to see how this list of 
restrictive characteristics serves to define what is 
acceptable as a mathematical solution, but what 
conceptual service does the notion of the 
algorithm perform for computer science?

The notion of the algorithm demarcates all 
expressions into algorithm and non-algorithm but 
what purpose does it serve to know that one 
program is an acceptable mathematical solution 
and another is not? Is the expression of one 
fundamentally different from the expression of the 
other? Is one interpreted differently from the 
other? Are algorithms first class citizens in some 
sense and non-algorithms second class citizens?  
Does determining whether a given expression is 
an acceptable mathematical solution or not aid in 
building better computer systems or in writing 
better programs?  

Important programs do not qualify as 
algorithms. An operating logic circuit is not 
necessarily a sequence of operations. An operating 
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system is not supposed to terminate nor does it 
yield a singular solution. An operating system 
cannot be deterministic because it must relate to 
uncoordinated inputs from the outside world. Any 
program utilizing random input to carry out its 
process such as a monte carlo simulation or fuzzy 
logic simulation is not an algorithm. No program 
with a bug can be an algorithm and it is generally 
accepted that no significant program can be 
demonstrated to be bug free. Programs and 
computers that utilize concurrency where many 
operations are carried out simultaneously cannot 
be considered algorithms. What does it mean 
when a sequential program qualifying as an 
algorithm is parallelized by a vectorizing 
compiler, and no longer qualifies as an algorithm?  

While a digital computer appears to be an 
algorithmic machine, it is constructed of 
nonalgorithmic parts (logic circuits) and a great 
deal of what it actually does is non algorithmic.  
These difficulties with the notion of the algorithm 
have not gone unnoticed and a variety of 
piecemeal amendments, revisions and 
redefinitions have been proposed.

 
"...there is an extension of the notion of 
a l g o r i t h m ( c a l l e d n o n d e t e r m i n i s t i c 
algorithms)."[11, p. 16] 

"Any computer program is at least a semi-
algorithm and any program that always halts is 
an algorithm."[18]

"There is another word for algorithm which 
obeys all of the above properties except 
termination and that is computational 
procedure."[19]

"An algorithm A is a probabilistically good 
algorithm if the algorithm "almost always" 
generates either an exact solution or a solution 
with a value that is "exceedingly close" to the 
value of the optimal solution."[20]

"The procedure becomes an algorithm if the 
Turing machine always halts".[21]

"By admitting probabilistic procedures in 
algorithms...."[22]

"...if, after executing some step, the control logic 
shifts to another step of the algorithm as dictated 
by a random device (for example, coin tossing), 
we call the algorithm random algorithm."[23]

"An algorithm which is based on such 
convergence tests is called an infinite 
algorithm."[23]

"Algorithms that are not direct are called 
indirect."[24]

"We drop the requirement that the algorithm stop 
and consider infinite algorithms".[24, p. 49]

These authors have sensed an 
inappropriate conceptual discrimination or simply 
an incompleteness and proposed a remedy. 
Programs that do not terminate, are not 
deterministic and do not give specific solutions 
can now be "included." They are no longer simply 
non-algorithmic, they now have positive labels, 
but simply assigning labels to non-algorithms 
misses the point. The point is that algorithm - 
nonalgorithm is not a conceptual distinction that 
contributes to an understanding of programs and 
computers.

As a paradigm of computer science, the 
notion of the algorithm is decidedly deficient. It 
offers no suggestion as to how an operation might 
be precisely defined. Nor does it suggest how a 
sequence should be determined.  Data is not even 
mentioned. It simply states that an algorithm must 
consist of a sequence of precisely defined 
operations. This unsupported imperative is at once 
an admission of expressional incompleteness and 
a refusal to be complete. The other algorithmic 
properties of termination, correctness and 
determination, while important to issues of 
computation, are quite irrelevant to the issues of 
designing and programming computers.

The notion of the algorithm simply does 
not provide conceptual enlightenment for the 
questions that most computer scientists are 
concerned with.
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4. What is Computer Science?
Many attempts have been made to define 

computer science[10,11,12,13,14]. All of these 
definitions view computer science as a 
heterogeneous group of disciplines related to the 
creation, use and study of computers. A typical 
definition simply offers a list of included topics 
such as: computability, complexity, algorithm 
theory, automata theory, programming, high level 
languages, machine languages, architecture, 
circuit design, switching theory, system 
organization, numerical mathematics, artificial 
intelligence, other applications, and so forth. The 
most recent and comprehensive survey of the 
attempts to define computer science is an article in 
the Annals of the History of Computing[15].  

Computer science appears to consist of a 
quite disparate collection of disciplines, but we 
argue that there is a common thread of conceptual 
focus running through these various disciplines. 
All of the disciplines that are included under the 
heading of computer science in any list are 
concerned in one way or another with the creation 
of or actualization of process expressions. In the 
next section we will define more precisely what 
we mean by the term process expression but here 
we loosely characterize it with some examples.  A 
logic circuit is an expression of a logical process.  
An architecture is an expression of a continuously 
acting process to interpret symbolically expressed 
processes. A program is a symbolic expression of 
a process. A programming language is an 
environment within which to create symbolic 
process expressions. A compiler is an expression 
of a process that translates between symbolic 
process expressions in different languages. An 
operating system is an expression of a process that 
manages the interpretation of other process 
expressions. Any application is an expression of 
the application process.

Computer science can be viewed as 
primarily concerned with questions about the 
expression of processes. What are all the possible 
ways a process can be expressed? Are some 
expressions superior in any sense to other 
expressions? What are all the possible ways of 
actualizing an expression? Are there common 

conceptual elements underlying all expressions?  
What is the best programming language? How can 
the best program be formulated? How can the best 
architecture be built? What is the best 
implementation environment?  These are the 
questions that occupy computer scientists and 
they all revolve around the nature of process 
expression.

Mathematicians, on the other hand, are 
primarily interested in exploring the nature and 
behavior of abstract symbol systems. The possible 
dynamics (process) of the symbols in actual use is 
largely ignored. “Mathematicians declared their 
independence of the real physical universe, about 
a century ago, and explained that they were really 
describing abstract objects and spaces...By and 
large, mathematicians... scorn questions about 
physical executability...[16]. They bypass general 
problems of  physical expression by appealing to 
a very formal and minimalized model of  process 
expression; the algorithm as characterized by the 
Turing machine. Their only interest concerning a  
given computational process is whether it is 
possible and whether it conforms to certain 
specific properties. Mathematicians, especially 
pure mathematicians, consider the abstract  
symbol manipulation process as partly 
independent of its symbolic expression and 
entirely independent of its physical expression.  A 
symbolic process may be expressed in any 
convenient language and executed on any 
convenient machine including a human with a 
pencil.  In summary:

Mathematics is primarily concerned with the 
nature and behavior of particular processes, 
regardless of how these processes might be 
expressed.  

By contrast, computer science is primarily 
concerned with the nature of the expression of 
processes regardless of what particular process 
might be expressed.  

There is much overlap between the 
interests of computer science and pure and applied 
mathematics, but this core concern with the nature 
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of process expression itself is the unique 
conceptual focus that distinguishes computer 
science from the other sciences and from 
mathematics. Computer science is the science of 
process expression. One published definition of 
computer science comes near the mark.

 
“computer science itself becomes no more (and 
no less) than the discipline of constructing 
appropriate descriptive languages.”[17]

5. Conclusion
What is essentially a discipline of pure 

mathematics has come to be called “the theory of 
computer science” and the notion of the algorithm 
has been decreed to be a fundamental paradigm of 
computer science.  The mathematical perspective, 
however, is the wrong point of view.  It is asking 
the wrong questions. Mathematicians and 
computer scientists are pursuing fundamentally 
different aims and the mathematicians tools are 
not as appropriate as once supposed to the 
questions of the computer scientist. The primary 
questions of computer science are not of 
computational possibilities but of expressional 
possibilities. Computer science does not need a 
theory of computation, it needs a comprehensive 
theory of process expression.

Juris Hartmanis, a pioneer of “computer 
science”, eloquently summarizes the situation.

 
 "In particular, in theoretical computer science 
we have been guilty of behaving too much like 
pure mathematicians; The mathematicians' 
compass has not always guided us well in 
exploring computer science.  Time and again, we 
have valued the difficulty of proofs over the 
insights the proved results give us about 
computing; we have been hypnotized by 
mathematical elegance and pursued abstraction 
for its own sake.  Frequently we have practiced 
"intellectual counter punching" by staying with 
small, previously defined (and possibly 
irrelevant) problems instead of searching for new 
formulations and the development of theories 
more directly related to computing.
 ...I believe that as we explore information 
processing further, there will be startling 

surprises and that our current ideas about 
computing will have to be modified 
substantially."[25]
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