
 © ACM, 1993. Karl Fant, "A Critical review of the Notion of the Algorithm in Computer Science", Proceedings of the 21st
Annual Computer Science Conference, February 1993, pp. 1-6.

A Critical Review of the Notion of the Algorithm in Computer Science

Karl Fant 1993

The notion of the algorithm is fundamental
to mathematics. It is also regarded as fundamental
to computer science. Yet, as we will argue, the
concerns of mathematics are quite different from
the concerns of computer science, and the notion
of the algorithm has been largely ineffective as a
paradigm for computer science. Because of its
focus on what are primarily mathematical
concerns, it provides narrow and even
innappropriate guidance to the practicing
computer scientist. As a preface to our arguments,
we first review the history of the notion of the
algorithm in mathematics and its evolution into
the current foundations of computer science.

1. The Notion of the Algorithm in
Mathematics

To understand the significance of the
notion of the algorithm in mathematics it is
necessary to understand the history of its
developement. The term “algorithm” derives from
the name of an important ninth century Persian
mathematician named Mohammed ibn Musa al-
Khowarizmi, who, in about 825 A.D., wrote a
small book describing how to calculate with a
new ten symbol, positional value number system
developed in India. It described simple procedures
for carrying out addition, subtraction,
multiplication and division in the new system.
Around 1120 this small book was translated into
Latin under the title Liber Algorismi de numero
Indorum (The Book of al-Khowarizmi on the
Hindu number system). This translation was
widely distributed and introduced the Hindu-
Arabic number system to Europe. By the mid
thirteenth century al-Khowarizmi had been quite
forgotten and the term algorism (Latin for al-
Kowarizmi's book) had come generally to refer to
computation in the new number system. At this
time an algorism was any book related to the
subject. The algorisms were the four arithmetic
operations. An algorist was one who calculated in

the new number system as opposed to an abacist
who used an abacus. By 1500 the algorists had
prevailed and the abacists had largely disappeared
from Europe.

These algorisms were strictly mechanical
procedures to manipulate symbols. They could be
carried out by an ignorant person mechanically
following simple rules, with no understanding of
the theory of operation, requiring no cleverness
and resulting in a correct answer. The same
procedures are taught to grade school children
today. Computing with Roman numerals on the
other hand required considerable skill and
ingenuity. There also existed at this time other
examples of mechanical formulation such as
Euclid's method to find the greatest common
denominator of two numbers. The fact that dumb
mechanical manipulations could produce
significant and subtle computational results
fascinated the medieval mathematicians. They
wondered if it was possible that the whole of
mathematics or even all of human knowledge
could be mechanically formulated and calculated
with simple rules of symbol manipulation.

Leibniz attempted just such a formulation
in the 1660s with his calculus ratiocinator and
characteristica universalis. The object was to
"enable the truths of any science, when
formulated in the universal language, to be
computed by arithmetical operations"[1].
Arithmetical here refers to the algorisms. Insight,
ingenuity and imagination would no longer be
required in mathematics or science. Leibniz did
not succeed and the idea lay fallow for two
hundred years.

During this period, Euclidean geometry,
with its axioms and rules of reasoning from the
simple to the complex continued to reign as the
fundamental paradigm of mathematics. In the
1680's, after the invention of analytical geometry
and having made new discoveries with his own
invention of his fluxional calculus, Newton was

2

careful to cast all the mathematical
demonstrations in his presentation of these new
discoveries in Philosophiae naturalis principia
mathematica in classical Euclidean geometry. A
symbolic analytical presentation would neither
have been understood nor accepted by his
contemporaries. Geometry, which dealt with
relationships among points, lines and surfaces,
was intuitive, obvious and real. Algebra dealt with
arbitrary symbols related by arbitrary rules and
did not relate to any specific reality. While algebra
was practical and useful it was not considered fit
terri tory for fundamental theoretical
consideration. Late into the nineteenth century
symbolic computation was distrusted and
discounted. This attitude is exemplified by a
nineteenth century astronomer who remarked that
he had not the "smallest confidence in any result
which is essentially obtained by the use of
imaginary symbols"[2].

The dream of formalizing thought in terms
of mechanical manipulation of symbols
reemerged with the symbolic logic of George
Boole presented in his book Laws of Thought in
1854. Boole argued persuasively that logic should
be a part of mathematics as opposed to its
traditional role as a part of philosophy. Frege went
several steps further and suggested that not only
should logic be a part of mathematics but that
mathematics should be founded on logic and he
began a program to derive all of mathematics in
terms of logic.

Meanwhile the paradigmatic edifice of
Euclidean geometry was beginning to show
cracks with the discovery of non Euclidean
geometries which were internally consistent and
were therefore mathematical systems just as valid
as Euclidean geometry. Symbolic computation
achieved paradigmatic preeminence with the
publication in 1899 of Hilbert's characterization of
Euclidean geometry in terms of algebra,
Grundlagen der Geometrie (Foundations of
Geometry) which emphasized the undefined
nature of the axioms. "One must be able to say at
all times-instead of points, straight lines and
planes- tables, chairs and beer mugs"[3].
Euclidean geometry was after all just one of many

possible axiomatic symbolic computation
systems.

As the twentieth century dawned symbolic
computation had been established as the arena of
mathematical theorizing and logical axiomatic
systems provided the rules of the game. The
mathematicians were hot on the trail of settling
the game once and for all. They seemed to be on
the verge of fulfilling Leibniz's dream of the
universal symbolic language that would proffer
absolute certainty and truth. The quest was led by
David Hilbert who outlined a program to settle
once and for all the foundational issues of
mathematics. The program focused on the
resolution of three questions.

1. Was mathematics complete in the sense
that every statement could be proved or
disproved?

2. Was mathematics consistent in the sense
that no statement could be proved both
true and false?

3. Was mathematics decidable in the sense
that there existed a definite method to
determine the truth or falsity of any
mathematical statement?[4]

The definite method of decidability in

question 3 was the modern incarnation of
Leibniz's arithmetical operations on his universal
symbolic language. Mechanical symbol
manipulation reemerges at the very foundations of
modern theoretical mathematics.

Hilbert firmly believed that the answer to
all three questions was 'yes', and the program was
simply one of tidying up loose ends. Hilbert was
convinced that an unsolvable mathematical
problem did not exist, "every mathematical
problem must necessarily be susceptible to an
exact statement, either in the form of an actual
answer to the question asked , or by the proof of
the impossibility of its solution"[5].

In 1931 Kurt Godel demonstrated that any
axiom system expressive enough to contain
arithmetic could not be both complete (there
existed statements that could not be proved either
true or false) and consistent (free of

3

contradictions) in the terms of the axiom system.
This result was the death knell for Hilbert's
program. The answers to the first two questions
were no. There remained the third question of
decidability. The entscheidungsproblem as Hilbert
named it: the definite method of solving a
mathematical problem. After Godel proved that
unsolvable problems (unprovable theorems) could
exist in an axiom system the decidability problem
became a search for a definite method to
determine if a given problem was solvable or
unsolvable in a given axiom system.

The decidability problem appealed directly
to the notion of a definite method which was also
referred to as an effective procedure or a
mechanical procedure. This notion had always
been fundamental to mathematics but had been
intuitively accepted and had not been a subject of
investigation itself. One knows an effective
procedure when one sees one. But to demonstrate
something about the nature of effective
procedures there must be a precise
characterization of what constitutes an effective
procedure.

Hilbert made it clear what constituted an
acceptable mathematical solution in his 1900
paper posing 23 problems which he considered
important to the future of mathematics.

 "that it shall be possible to establish the
correctness of a solution by means of a finite
number of steps based upon a finite number of
hypotheses which are implied in the statement of
the problem and which must always be exactly
formulated." [5, p. 275]

Satisfactorily characterizing this notion of

effective or mechanical procedure became an
important foundational issue in mathematics and
several mathematicians applied themselves to the
problem. Among them were Herbrand and Godel,
Post, Turing, Church and Markov. Each had a
different characterization of effective
computability which were all shown later to be
logically equivalent. In 1936 both Church with his
lambda calculus and Turing with his machine
proved that no effective procedure existed to
determine the provability or unprovability of a

given mathematical problem. The answer to
Hilbert’s third question was also no. Leibniz's
calculus ratiocinator with its arithmetical
resolution of all questions was not possible.
Ingenuity, insight and imagination cannot be done
away with in mathematics after all.

 In spite of the failure of Hilbert’s
program, questions of effective computability
have continued to be a fundamental concern of
mathematicians. Through the 40s and 50s A. A.
Markov tried to consolidate all the work of the
others on effective computability and introduced
the term algorithm with its modern meaning as a
name for his own theory of effectively
computable functions. In the translated first
sentence of his 1954 book Teoriya Algorifmov
(Theory of Algorithms) he states;

"In mathematics, "algorithm" is commonly
understood to be an exact prescription, defining a
computational process, leading from various
initial data to the desired result."[6]

The term algorithm was not, apparently, a

commonly used mathematical term in America or
Europe before Markov, a Russian, introduced it.
None of the other investigators, Herbrand and
Godel, Post, Turing or Church used the term. The
term however caught on very quickly in the
computing community. In 1958 a new
programming language was named ALGOL
(ALGOrithmic Language). In 1960 a new
department of the Communications of the ACM
was introduced called "Algorithms".[7]

Historically the notion of the algorithm
was developed to investigate the foundations of
mathematics and has evolved in relation to the
needs of mathematicians. The notion of the
algorithm in mathematics is a limiting definition
of what constitutes an acceptable solution to a
mathematical problem. It establishes the ground
rules of mathematics.

2. The Advent of Computers
The electronic digital computer emerged

in 1945. It computed one step at a time, was by
practical necessity limited to a finite number of

4

steps and was limited to a finite number of exactly
formulated hypotheses (instructions). The
electronic digital computer was an incarnation of
the mathematician’s effective solution procedure.
The mathematicians, being intimately involved
with the creation of the computer, having studied
mechanical computation for half a century, and
having in hand an explicitly mechanical model of
computation in the Turing machine, quite
reasonably became the defacto theorists for this
new phenomenon. One of these mathematicians,
John Von Neumann, was a student of Hilbert's and
a significant contributor to his program to resolve
the foundations of mathematics. Another was of
course Turing himself. The related mathematical
concepts along with the notion of the algorithm
were transplanted into the fledgling science of
computers.

The notion of the algorithm is accepted
today, by leading computer scientists such as
Donald Knuth and by leading philosophers such
as Zenon Pylyshyn, as a fundamental paradigm of
computer science.

"The notion of the algorithm is basic to all
computer programming..."[8]

"One of the concepts most central to computer
science is that of an algorithm."[9]

We have seen that the algorithm concept
was used and developed as a tool for the study of
the foundations of mathematics, was applied by
mathematicians to the design of computers and is
now regarded as a core concept in computer
science. But how relevant is this notion to
computer science?

3. The Notion of the Algorithm in
Computer Science

Introductory texts on computer science
often begin with a chapter on the notion of the
algorithm, declaring it the fundamental paradigm
of computer science. Conspicuously absent from
these introductory chapters is a discussion of how
the notion contributes to the resolution of
significant problems of computer science. In the

remaining chapters of these texts there is typically
no further appeal to the notion of the algorithm
and rarely even a usage of the word itself. The
notion is never or very rarely appealed to in texts
on logic design, computer architecture, operating
systems, programming, software engineering,
programming languages, compilers, data
structures and data base systems.

The notion of the algorithm is typically
defined by simply presenting a list of properties
that an expression must posses to qualify as an
algorithm. The following definition of an
algorithm is typical.

1. An algorithm must be a step by step
sequence of operations

2. Each operation must be precisely defined
3. An algorithm must terminate in a finite

number of steps
4. An algorithm must effectively yield a

correct solution
5. An algorithm must be deterministic in

that given the same input it will always
yield the same solution

This is pretty much what Hilbert proposed

in 1900 and it is easy to see how this list of
restrictive characteristics serves to define what is
acceptable as a mathematical solution, but what
conceptual service does the notion of the
algorithm perform for computer science?

The notion of the algorithm demarcates all
expressions into algorithm and non-algorithm but
what purpose does it serve to know that one
program is an acceptable mathematical solution
and another is not? Is the expression of one
fundamentally different from the expression of the
other? Is one interpreted differently from the
other? Are algorithms first class citizens in some
sense and non-algorithms second class citizens?
Does determining whether a given expression is
an acceptable mathematical solution or not aid in
building better computer systems or in writing
better programs?

Important programs do not qualify as
algorithms. An operating logic circuit is not
necessarily a sequence of operations. An operating

5

system is not supposed to terminate nor does it
yield a singular solution. An operating system
cannot be deterministic because it must relate to
uncoordinated inputs from the outside world. Any
program utilizing random input to carry out its
process such as a monte carlo simulation or fuzzy
logic simulation is not an algorithm. No program
with a bug can be an algorithm and it is generally
accepted that no significant program can be
demonstrated to be bug free. Programs and
computers that utilize concurrency where many
operations are carried out simultaneously cannot
be considered algorithms. What does it mean
when a sequential program qualifying as an
algorithm is parallelized by a vectorizing
compiler, and no longer qualifies as an algorithm?

While a digital computer appears to be an
algorithmic machine, it is constructed of
nonalgorithmic parts (logic circuits) and a great
deal of what it actually does is non algorithmic.
These difficulties with the notion of the algorithm
have not gone unnoticed and a variety of
piecemeal amendments, revisions and
redefinitions have been proposed.

"...there is an extension of the notion of
a l g o r i t h m (c a l l e d n o n d e t e r m i n i s t i c
algorithms)."[11, p. 16]

"Any computer program is at least a semi-
algorithm and any program that always halts is
an algorithm."[18]

"There is another word for algorithm which
obeys all of the above properties except
termination and that is computational
procedure."[19]

"An algorithm A is a probabilistically good
algorithm if the algorithm "almost always"
generates either an exact solution or a solution
with a value that is "exceedingly close" to the
value of the optimal solution."[20]

"The procedure becomes an algorithm if the
Turing machine always halts".[21]

"By admitting probabilistic procedures in
algorithms...."[22]

"...if, after executing some step, the control logic
shifts to another step of the algorithm as dictated
by a random device (for example, coin tossing),
we call the algorithm random algorithm."[23]

"An algorithm which is based on such
convergence tests is called an infinite
algorithm."[23]

"Algorithms that are not direct are called
indirect."[24]

"We drop the requirement that the algorithm stop
and consider infinite algorithms".[24, p. 49]

These authors have sensed an
inappropriate conceptual discrimination or simply
an incompleteness and proposed a remedy.
Programs that do not terminate, are not
deterministic and do not give specific solutions
can now be "included." They are no longer simply
non-algorithmic, they now have positive labels,
but simply assigning labels to non-algorithms
misses the point. The point is that algorithm -
nonalgorithm is not a conceptual distinction that
contributes to an understanding of programs and
computers.

As a paradigm of computer science, the
notion of the algorithm is decidedly deficient. It
offers no suggestion as to how an operation might
be precisely defined. Nor does it suggest how a
sequence should be determined. Data is not even
mentioned. It simply states that an algorithm must
consist of a sequence of precisely defined
operations. This unsupported imperative is at once
an admission of expressional incompleteness and
a refusal to be complete. The other algorithmic
properties of termination, correctness and
determination, while important to issues of
computation, are quite irrelevant to the issues of
designing and programming computers.

The notion of the algorithm simply does
not provide conceptual enlightenment for the
questions that most computer scientists are
concerned with.

6

4. What is Computer Science?
Many attempts have been made to define

computer science[10,11,12,13,14]. All of these
definitions view computer science as a
heterogeneous group of disciplines related to the
creation, use and study of computers. A typical
definition simply offers a list of included topics
such as: computability, complexity, algorithm
theory, automata theory, programming, high level
languages, machine languages, architecture,
circuit design, switching theory, system
organization, numerical mathematics, artificial
intelligence, other applications, and so forth. The
most recent and comprehensive survey of the
attempts to define computer science is an article in
the Annals of the History of Computing[15].

Computer science appears to consist of a
quite disparate collection of disciplines, but we
argue that there is a common thread of conceptual
focus running through these various disciplines.
All of the disciplines that are included under the
heading of computer science in any list are
concerned in one way or another with the creation
of or actualization of process expressions. In the
next section we will define more precisely what
we mean by the term process expression but here
we loosely characterize it with some examples. A
logic circuit is an expression of a logical process.
An architecture is an expression of a continuously
acting process to interpret symbolically expressed
processes. A program is a symbolic expression of
a process. A programming language is an
environment within which to create symbolic
process expressions. A compiler is an expression
of a process that translates between symbolic
process expressions in different languages. An
operating system is an expression of a process that
manages the interpretation of other process
expressions. Any application is an expression of
the application process.

Computer science can be viewed as
primarily concerned with questions about the
expression of processes. What are all the possible
ways a process can be expressed? Are some
expressions superior in any sense to other
expressions? What are all the possible ways of
actualizing an expression? Are there common

conceptual elements underlying all expressions?
What is the best programming language? How can
the best program be formulated? How can the best
architecture be built? What is the best
implementation environment? These are the
questions that occupy computer scientists and
they all revolve around the nature of process
expression.

Mathematicians, on the other hand, are
primarily interested in exploring the nature and
behavior of abstract symbol systems. The possible
dynamics (process) of the symbols in actual use is
largely ignored. “Mathematicians declared their
independence of the real physical universe, about
a century ago, and explained that they were really
describing abstract objects and spaces...By and
large, mathematicians... scorn questions about
physical executability...[16]. They bypass general
problems of physical expression by appealing to
a very formal and minimalized model of process
expression; the algorithm as characterized by the
Turing machine. Their only interest concerning a
given computational process is whether it is
possible and whether it conforms to certain
specific properties. Mathematicians, especially
pure mathematicians, consider the abstract
symbol manipulation process as partly
independent of its symbolic expression and
entirely independent of its physical expression. A
symbolic process may be expressed in any
convenient language and executed on any
convenient machine including a human with a
pencil. In summary:

Mathematics is primarily concerned with the
nature and behavior of particular processes,
regardless of how these processes might be
expressed.

By contrast, computer science is primarily
concerned with the nature of the expression of
processes regardless of what particular process
might be expressed.

There is much overlap between the
interests of computer science and pure and applied
mathematics, but this core concern with the nature

7

of process expression itself is the unique
conceptual focus that distinguishes computer
science from the other sciences and from
mathematics. Computer science is the science of
process expression. One published definition of
computer science comes near the mark.

“computer science itself becomes no more (and
no less) than the discipline of constructing
appropriate descriptive languages.”[17]

5. Conclusion
What is essentially a discipline of pure

mathematics has come to be called “the theory of
computer science” and the notion of the algorithm
has been decreed to be a fundamental paradigm of
computer science. The mathematical perspective,
however, is the wrong point of view. It is asking
the wrong questions. Mathematicians and
computer scientists are pursuing fundamentally
different aims and the mathematicians tools are
not as appropriate as once supposed to the
questions of the computer scientist. The primary
questions of computer science are not of
computational possibilities but of expressional
possibilities. Computer science does not need a
theory of computation, it needs a comprehensive
theory of process expression.

Juris Hartmanis, a pioneer of “computer
science”, eloquently summarizes the situation.

 "In particular, in theoretical computer science
we have been guilty of behaving too much like
pure mathematicians; The mathematicians'
compass has not always guided us well in
exploring computer science. Time and again, we
have valued the difficulty of proofs over the
insights the proved results give us about
computing; we have been hypnotized by
mathematical elegance and pursued abstraction
for its own sake. Frequently we have practiced
"intellectual counter punching" by staying with
small, previously defined (and possibly
irrelevant) problems instead of searching for new
formulations and the development of theories
more directly related to computing.
 ...I believe that as we explore information
processing further, there will be startling

surprises and that our current ideas about
computing will have to be modified
substantially."[25]

References

[1] Czeslaw Lejewski, "History of Logic," in
Encyclopedia Britannica Macropaedia Vol. 11
(Chicago, William Benton, 1974) pp.56-72.

[2] M. M. Garland, Cambridge Before Darwin
(Cambridge, Cambridge University, 1980) p. 36.

[3] Henry George Forder, Frederick Albert Valentine,
"Euclidean Geometry," in Encyclopaedia Britannica
Macropedia Vol. 7 (Chicago, William Benton, 1974)
pp. 1099-1112.

[4] Andrew Hodges, Alan Turing the Enigma (New York,
Simon and Schuster, 1983) p. 91.

[5] David Hilbert, "Mathematical Problems," in
Mathematics People Problems Results, ed. by Douglas
M. Campbell and John C. Higgins (Belmont, Cal.,
Wadsworth International, 1984) p. 277.

[6] A. A. Markov, Theory of Algorithms (Jerusalem, Keter
Press, 1971) translated by Schorr-Kon. p. 1.

[7] J. H. Wegstein, "Algorithms," in Communications of
the ACM, Vol. 3, No. 2, February 1960, p. 73.

[8] Donald E. Knuth, Fundamental Algorithms (Reading,
Mass., Addison-Wesley, 1969) p. 1.

[9] Zenon W. Pylyshyn, "Theoretical Ideas: Algorithms
Automata and Cybernetics," in Perspectives on the
Computer Revolution, ed. by Zenon W. Pylyshyn
(Englewood Cliffs, N. J., Prentice-Hall, 1970) pp.
60-68.

[10] S. Amarel, "Computer Science," in Encyclopedia of
Computer Science (1st ed. 1976),(New York,
Petrocelli/Carter, 1976) pp. 314-318.

[11] M.S. Carberry, H.M. Khalil, J.F. Leathrum and L.S.
Levy, Foundations of Computer Science (Potomac,
MA, Computer Science Press, 1979) pp.2-4.

[12] J.M. Brady, The Theory of Computer Science (London,
Chapman and Hall 1977) pp.8-9.

[13] A. Ralston, Introduction to Programming and
Computer Science (New York, McGraw-Hill, 1971)
pp.1-5.

[14] I. Pohl, A. Shaw, The Nature of Computation
(Rockville, MA, Computer Science Press, 1981) pp.
3-7.

[15] Paul Ceruzzi, “Electronics Technology and Computer
Science, 1940-1975: A Coevolution”, Annals of the
History of Computing, Vol. 10, No. 4, 1989, pp.
265-270.

8

[16] Rolf Landauer, “Computation: A Fundamental Physical
View” Phys. Scr. 35, (1987), pp.88-95.

[17] Harold Abelson, Gerald Jay Sussman with Julie
Sussman, Structure and Interpretation of Computer
Programs (Cambridge Ma., MIT Press, New York,
McGraw-Hill, 1985) p. 295.

[18] R.R. Korfhage, "Algorithm," in Encyclopedia of
Computer Science (1st ed. 1976),(New York,
Petrocelli/Carter, 1976) p. 49.

[19] Ellis Horowitz and Sartaj Sahni, Fundamentals of
Computer Algorithms (Potomac, Computer Science
Press, MA, 1979) pp. 1-2.

[20] Benjamin W. Wah, C. V. Ramamoorthy "Theory of
Algorithms and Computation Complexity with
Applications to Software Design," in Handbook of
Software Engineering, ed. by Charles R. Vick and C.
V. Ramamoorthy (New York, Van Nostrand Reinhold,
1984) p. 88.

[21] Kurt Maly, Allen R. Hanson, Fundamentals of the
Computing Sciences (Englewood Cliffs, N.J., Prentice-
Hall 1978) p. 41.

[22] F. S. Beckman, Mathematical Foundations of
Programming (Reading, Mass., Addison-Wesley,1980)
p. 398.

[23] E. V. Krishnamurthy, Introductory Theory of Computer
Science (New York, Springer-Verlag, 1983) p. 3.

[24] John K. Rice, John R. Rice, Introduction to Computer
Science (New York, Holt, Rinehart and Winston, 1969)
p. 47.

[25] Juris Hartmanis, "Observations About the
Development of Theoretical Computer Science",
Annals of the History of Computing, Vol. 3, No. 1,
January 1981, p. 50.

