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Cycle Granularity

Logically Determined Design:
Clockless System Design With NULL Convention Logic

by Karl Fant

John Wiley &  Sons, Inc.

Diagrams by permission of John Wiley & Sons, Inc.

Introduce cycle granularity and 2D pipelining



Integrated Coordination

The acknowledge regulation
behavior is integrated into the logic
operators. The acknowledge path
is added as input and the threshold
is increased by 1.
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Integrate completeness/acknowledge
in first and last ranks of logic
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Combinational expression bounded by explicit ranks of
logic performing only completeness/acknowledge
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Integrate completeness/acknowledge
in every rank of logic

Integrate completeness/acknowledge into a
middle rank forming a finer grained pipeline

Rank Level Pipelining

Page 3



There is no operator
performing solely a data
function. All operators are
contributing to cycle
coordination.

Variable Level Pipelining
Every variable acknowledges all variables that contribute to it.

Every variable is acknowledged by each variable to which it contributes.

Finest granularity cycle structure
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Variable pipelining with cycle
buffering insuring shortest
cycle periods provides
identical functionality just with
faster throughput.
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Too Fine Grained Partitioning

It can be  expensive to partition too finely. The full adder, for
instance, does not have an internal variable boundary and
one has to be created to partition between the operators.
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Four Bit Adder
Full Data Path Width Cycle. Explicit Registration.
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Four Bit Adder
Bit Width Cycles. Explicit Registration.
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Four Bit Adder
Bit Width Cycles. Integrated Registration.
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Four Bit Adder
Primitive Level Cycles. Finest Granularity Cycles.

functionally identical to
page 6 but with much
higher throughput.
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Four Bit Adder
Full Data Path Width Cycle. Explicit Registration.

Using optimal NCL
full adder.
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Four Bit Adder
Bit Width Cycles. Explicit Registration.
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Four Bit Adder
Bit Width Cycles. Integrated Registration.

Using optimal NCL
full adder.

also with integrated
steering pipelining
along with CARRY



Full path width completion

4 value
variable

4 value
variable

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

2

2

2

2

4 value
variable

4 value
variable

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

Partitioned path completion. Individual variables can flow freely.

Data Path Variable Partitioning

Completeness
only has to be
expressed
among genuine
dependencies. If
there are no
dependency
relationships
then mutual
completeness
coordination is
uneccessary
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A DATA path can be partitioned even if there is a dependency relationship among
the variables such as the carry dependence or a data path spanning control variable.

A data path can be viewed as a set of parallel pipelines each carrying one variable.
Dependency relationships among the variables can be pipelined orthogonally across
the data path

Data path

2D Pipelining the Data Path

Cycle structure of 1D spanning
completeness data path

Basic cycle structure of 2D
pipelined data path

• • • •

2D pipelined
MSV leading

• • • •

2D pipelined
Vertical

LSV

MSV

• • • •

2D pipelined
LSV leading

1D pipelined

Diagonal Wavefront Flow
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LSV

MSV

Steering variable pipelines

This is a two way  fan-out steering
structure that steers from a
common source column I(n) to
destination column A(n) or B(n).

1

source
column

destination
columns

steering
variable

top down view of 3 way fan out

2D pipelined data path with
orthogonal steering variable
pipelines and triangle buffer
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2D Pipelined Steering Variables
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NN+1N+2N+3

NULL data

NN+1N+2N+3N+4N+5N+6N+7

NULL data

The Throughput Effect of 2D Pipelining
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LSV

MSV

a. Positive slope to vertical slope b. Positive slope to negative slope c. cycle structure of triangle buffer
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Skewed to vertical

Vertical to skewed

2D Triangle Buffering

The wavefronts will flow at a slope determined by the relative throughputs of the
orhtogonal pipelines. The slope can be changed with triangle buffers to match
functions that require specific slopes such clocked interfaces or barrel shifters.
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